Giving 2 sub_models, build a correlated bivaraite operator based on K = D(theta, eta) $$D(\theta, \rho) = \begin{pmatrix} \cos(\theta) + \rho \sin(\theta) & -\sin(\theta) \sqrt{1+\rho^2} \\ \sin(\theta) - \rho \cos(\theta) & \cos(\theta) \sqrt{1+\rho^2} \end{pmatrix}$$ Exact same implementation as in paper. Fix noise sd=1.
Usage
bv_normal(
mesh,
sub_models,
rho = 0,
c1 = 1,
c2 = 1,
group = NULL,
share_param = FALSE,
fix_theta = FALSE,
...
)Arguments
- mesh
mesh for build the model
- sub_models
a list of sub_models (total 2 sub_models)
- rho
the parameter related to correlation
- c1
the noise sd for 1st sub_model
- c2
the noise sd for 2nd sub_model
- group
group vector, can be inherited from ngme() function
TRUE if share the same parameter for 2 sub_models (of same type)
- ...
ignore
