Giving 2 sub_models, build a correlated bivaraite operator based on K = D(theta, eta) $$D(\theta, \rho) = \begin{pmatrix} \cos(\theta) + \rho \sin(\theta) & -\sin(\theta) \sqrt{1+\rho^2} \\ \sin(\theta) - \rho \cos(\theta) & \cos(\theta) \sqrt{1+\rho^2} \end{pmatrix}$$ Exact same implementation as in paper. Fix noise sd=1.

bv_normal(
  mesh,
  sub_models,
  rho = 0,
  c1 = 1,
  c2 = 1,
  group = NULL,
  share_param = FALSE,
  fix_bv_theta = FALSE,
  ...
)

Arguments

mesh

mesh for build the model

sub_models

a list of sub_models (total 2 sub_models)

rho

the parameter related to correlation

c1

the noise sd for 1st sub_model

c2

the noise sd for 2nd sub_model

group

group vector, can be inherited from ngme() function

share_param

TRUE if share the same parameter for 2 sub_models (of same type)

...

ignore

Value

a list of specification of model