
Package index
-
ngme2-packagengme2 - Inference and prediction for mixed effects models with flexible non-Gaussian and Gaussian distributions.
-
ngme() - Fit an additive linear mixed effect model over replicates
-
summary(<ngme>) - Summary of ngme fit result
-
ngme_result() - Access the result of a ngme fitted model
-
ngme_cov_matrix() - variance of the data or the latent field
-
ngme_post_samples() - posterior samples of different latent models
-
ngme_model_types() - Show ngme model types
-
f() - Specifying a latent process model (wrapper function for each model)
-
ar() - ngme AR(p) model specification
-
ar1() - ngme AR(1) model specification
-
arma() - ngme ARMA(p, q) model specification
-
arma11() - Convenience wrapper for ARMA(1,1)
-
matern() - ngme Matern SPDE model specification
-
rw1() - Random Walk Model of Order 1 (RW1)
-
rw2() - Random Walk Model of Order 2 (RW2)
-
ou() - Ornstein-Uhlenbeck Process Model
-
iid() - ngme iid model specification
-
tp() - ngme tensor-product model specification
-
bv() - Ngme bivariate model specification
-
bv_matern() - Ngme bivariate model with Matern sub_models
-
compute_score_given_pred() - Compute the scores given the prediction
-
re() - ngme random effect model
-
spacetime() - Ngme space-time non-separable model specification
-
generic() - Generic precision matrix operator
-
generic_ns() - Non-stationary precision matrix operator with custom matrix combinations
-
ngme_noise()noise_normal()noise_nig()noise_gal()noise_skew_t()noise_t()noise_normal_nig() - ngme noise specification
-
ngme_noise_types() - Show ngme noise types
-
compare_noise_kld() - Compare noise objects using Kullback-Leibler divergence
-
print(<noise_kld_comparison>) - Print method for noise_kld_comparison
-
sgd() - Vanilla SGD optimization
-
precond_sgd() - Preconditioner SGD optimization
-
momentum() - Momentum SGD optimization
-
adagrad() - AdaGrad SGD optimization
-
rmsprop() - Root Mean Square Propagation (RMSProp) SGD optimization
-
adam() - Adam SGD optimization
-
adamW() - AdamW SGD optimization
-
bfgs() - BFGS optimization
-
adaptive_gd() - Adaptive gradient descent From the paper: https://arxiv.org/pdf/1910.09529 The update rule for adaptive gradient descent is: $$\lambda_k = \min(\sqrt{1 + \theta_{k-1}} \lambda_{k-1}, \frac{||x_k - x_{k-1}||}{2 ||\nabla f(x_k) - \nabla f(x_{k-1})||} )$$ $$x_{k+1} = x_k - \lambda_k \nabla f(x_k)$$ $$\theta_k = \lambda_k / \lambda_{k-1}$$
-
predict(<ngme>) - Predict function of ngme2 predict using ngme after estimation
-
cross_validation() - Compute the cross-validation for the ngme model Perform cross-validation for ngme model first into sub_groups (a list of target, and train data)
-
plot(<ngme_noise>) - Plot the density of one or more stationary noise objects
-
traceplot() - Trace plot of ngme fitting
-
simulate(<ngme>) - Simulate from a ngme object (possibly with replicates)
-
simulate(<ngme_model>) - Simulate latent process with noise
-
simulate(<ngme_noise>) - Simulate ngme noise object
-
ngme_update() - Update ngme2 to the latest stable version
-
ngme_optimizers() - List supported optimizers
-
get_data_from_formula() - Extracts design matrix from a formula and data.
-
compute_log_like() - Compute Gaussian log-likelihood
-
make_time_series_cv_index() - Create Time Series Cross-Validation Indices
-
precision_matrix_multivariate() - Compute the precision matrix for multivariate model
-
precision_matrix_multivariate_spde() - Compute the precision matrix for multivariate spde Matern model
-
compute_index_corr_from_map() - Helper function to compute the index_corr vector
-
mean_list() - taking mean over a list of nested lists
-
ngme_as_sparse() - Convert sparse matrix into sparse dgCMatrix
-
control_opt() - Generate control specifications for
ngme()function.
-
control_ngme() - Generate control specifications for the ngme model
-
ngme_parse_formula() - Parse the formula for ngme function
-
ngme_ts_make_A() - Make observation matrix for time series
-
print(<ngme>) - Print an ngme model
-
print(<ngme_model>) - Print ngme model
-
print(<ngme_operator>) - Print ngme operator
-
print(<ngme_replicate>) - Print ngme object
-
print(<ngme_noise>) - Print ngme noise
-
print(<ngme_trajectories>) - Print method for ngme_trajectories
-
print(<parameter_distance>) - Print method for parameter_distance
-
get_parameter_distance() - Calculate parameter distance from true values
-
get_trace_trajectories() - Get trace trajectories from ngme fitting
-
plot(<parameter_distance>) - Plot method for parameter_distance
-
ngme_prior() - ngme prior specification
-
ngme_prior_types() - Show ngme priors
-
test_ngme() - Test ngme function
-
ngme_make_mesh_repls() - ngme make mesh for different replicates
-
merge_noise() - Merge 2 noise into 1 noise
-
merge_replicates() - Merge model of replicates into model of 1 replicate given train_idx and test_idx, the merged model contains all the information of train_idx from different replicates.
-
get_trajectories() - get the trajectories of parameters of the model
-
name2fun() - Convert transformation name to function
-
create_paired_cv_splits() - Create paired indices for bivariate cross-validation Ensures that paired observations (e.g., u_wind and v_wind at same location) are kept together in the same fold
-
openmp_test() - Test OpenMP availability and report the number of threads.
-
argo_float - Argo float dataset
-
cienaga - The swamp of Cienaga Grande in Santa Marta, Colombia
-
cienaga.border - The x y location of the border of the swamp of Cienaga Grande in Santa Marta, Colombia