rSPDE inlabru mapper
Usage
bru_get_mapper.inla_rspde(model, ...)
ibm_n.bru_mapper_inla_rspde(mapper, ...)
ibm_values.bru_mapper_inla_rspde(mapper, ...)
ibm_jacobian.bru_mapper_inla_rspde(mapper, input, ...)
Examples
# \donttest{
# devel version
if (requireNamespace("INLA", quietly = TRUE) &&
requireNamespace("inlabru", quietly = TRUE)) {
library(INLA)
library(inlabru)
set.seed(123)
m <- 100
loc_2d_mesh <- matrix(runif(m * 2), m, 2)
mesh_2d <- inla.mesh.2d(
loc = loc_2d_mesh,
cutoff = 0.05,
max.edge = c(0.1, 0.5)
)
sigma <- 1
range <- 0.2
nu <- 0.8
kappa <- sqrt(8 * nu) / range
op <- matern.operators(
mesh = mesh_2d, nu = nu,
range = range, sigma = sigma, m = 2,
parameterization = "matern"
)
u <- simulate(op)
A <- inla.spde.make.A(
mesh = mesh_2d,
loc = loc_2d_mesh
)
sigma.e <- 0.1
y <- A %*% u + rnorm(m) * sigma.e
y <- as.vector(y)
data_df <- data.frame(
y = y, x1 = loc_2d_mesh[, 1],
x2 = loc_2d_mesh[, 2]
)
rspde_model <- rspde.matern(
mesh = mesh_2d,
nu_upper_bound = 2
)
cmp <- y ~ Intercept(1) +
field(cbind(x1,x2), model = rspde_model)
rspde_fit <- bru(cmp, data = data_df)
summary(rspde_fit)
}
#> This is INLA_24.12.11 built 2024-12-11 19:58:26 UTC.
#> - See www.r-inla.org/contact-us for how to get help.
#> - List available models/likelihoods/etc with inla.list.models()
#> - Use inla.doc(<NAME>) to access documentation
#> Loading required package: fmesher
#> inlabru version: 2.12.0
#> INLA version: 24.12.11
#> Components:
#> Intercept: main = linear(1), group = exchangeable(1L), replicate = iid(1L), NULL
#> field: main = cgeneric(cbind(x1, x2)), group = exchangeable(1L), replicate = iid(1L), NULL
#> Likelihoods:
#> Family: 'gaussian'
#> Tag: ''
#> Data class: 'data.frame'
#> Response class: 'numeric'
#> Predictor: y ~ .
#> Used components: effects[Intercept, field], latent[]
#> Time used:
#> Pre = 0.41, Running = 6.84, Post = 0.382, Total = 7.64
#> Fixed effects:
#> mean sd 0.025quant 0.5quant 0.975quant mode kld
#> Intercept 0.286 0.172 -0.054 0.285 0.629 0.285 0
#>
#> Random effects:
#> Name Model
#> field CGeneric
#>
#> Model hyperparameters:
#> mean sd 0.025quant 0.5quant
#> Precision for the Gaussian observations 168.733 90.699 49.488 149.940
#> Theta1 for field -3.854 0.511 -4.989 -3.807
#> Theta2 for field 2.881 0.216 2.460 2.879
#> Theta3 for field -0.123 0.277 -0.589 -0.145
#> 0.975quant mode
#> Precision for the Gaussian observations 395.673 115.211
#> Theta1 for field -3.014 -3.577
#> Theta2 for field 3.311 2.873
#> Theta3 for field 0.488 -0.257
#>
#> Deviance Information Criterion (DIC) ...............: -125.22
#> Deviance Information Criterion (DIC, saturated) ....: 196.31
#> Effective number of parameters .....................: 93.72
#>
#> Watanabe-Akaike information criterion (WAIC) ...: -145.94
#> Effective number of parameters .................: 54.28
#>
#> Marginal log-Likelihood: -109.52
#> is computed
#> Posterior summaries for the linear predictor and the fitted values are computed
#> (Posterior marginals needs also 'control.compute=list(return.marginals.predictor=TRUE)')
#>
# devel.tag
# }