
rSPDE inlabru mapper
Source:R/inla_rspde_intrinsic.R, R/inlabru_rspde.R
bru_get_mapper.inla_rspde.RdrSPDE inlabru mapper
Usage
ibm_n.bru_mapper_inla_rspde_fintrinsic(mapper, ...)
ibm_values.bru_mapper_inla_rspde_fintrinsic(mapper, ...)
ibm_jacobian.bru_mapper_inla_rspde_fintrinsic(mapper, input, ...)
bru_get_mapper.inla_rspde(model, ...)
ibm_n.bru_mapper_inla_rspde(mapper, ...)
ibm_values.bru_mapper_inla_rspde(mapper, ...)
ibm_jacobian.bru_mapper_inla_rspde(mapper, input, ...)Examples
# \donttest{
# devel version
if (requireNamespace("INLA", quietly = TRUE) &&
requireNamespace("inlabru", quietly = TRUE)) {
library(INLA)
library(inlabru)
set.seed(123)
m <- 100
loc_2d_mesh <- matrix(runif(m * 2), m, 2)
mesh_2d <- inla.mesh.2d(
loc = loc_2d_mesh,
cutoff = 0.05,
max.edge = c(0.1, 0.5)
)
sigma <- 1
range <- 0.2
nu <- 0.8
kappa <- sqrt(8 * nu) / range
op <- matern.operators(
mesh = mesh_2d, nu = nu,
range = range, sigma = sigma, m = 2,
parameterization = "matern"
)
u <- simulate(op)
A <- inla.spde.make.A(
mesh = mesh_2d,
loc = loc_2d_mesh
)
sigma.e <- 0.1
y <- A %*% u + rnorm(m) * sigma.e
y <- as.vector(y)
data_df <- data.frame(
y = y, x1 = loc_2d_mesh[, 1],
x2 = loc_2d_mesh[, 2]
)
rspde_model <- rspde.matern(
mesh = mesh_2d,
nu_upper_bound = 2
)
cmp <- y ~ Intercept(1) +
field(cbind(x1,x2), model = rspde_model)
rspde_fit <- bru(cmp, data = data_df)
summary(rspde_fit)
}
#>
#> Loading required package: fmesher
#> Warning: `inla.mesh.2d()` was deprecated in INLA 23.08.18.
#> ℹ Please use `fmesher::fm_mesh_2d_inla()` instead.
#> ℹ For more information, see
#> https://inlabru-org.github.io/fmesher/articles/inla_conversion.html
#> ℹ To silence these deprecation messages in old legacy code, set
#> `inla.setOption(fmesher.evolution.warn = FALSE)`.
#> ℹ To ensure visibility of these messages in package tests, also set
#> `inla.setOption(fmesher.evolution.verbosity = 'warn')`.
#> inlabru version: 2.13.0
#> INLA version: 26.01.26-1
#> Components:
#> Intercept: main = linear(1), group = exchangeable(1L), replicate = iid(1L), NULL
#> field: main = cgeneric(cbind(x1, x2)), group = exchangeable(1L), replicate = iid(1L), NULL
#> Observation models:
#> Family: 'gaussian'
#> Tag: <No tag>
#> Data class: 'data.frame'
#> Response class: 'numeric'
#> Predictor: y ~ .
#> Additive/Linear: TRUE/TRUE
#> Used components: effects[Intercept, field], latent[]
#> Time used:
#> Pre = 0.563, Running = 1.35, Post = 0.107, Total = 2.02
#> Fixed effects:
#> mean sd 0.025quant 0.5quant 0.975quant mode kld
#> Intercept 0.305 0.169 -0.028 0.305 0.641 0.305 0
#>
#> Random effects:
#> Name Model
#> field CGeneric
#>
#> Model hyperparameters:
#> mean sd 0.025quant 0.5quant
#> Precision for the Gaussian observations 155.13 76.326 49.368 140.761
#> Theta1 for field -3.78 0.498 -4.567 -3.833
#> Theta2 for field 2.94 0.202 2.540 2.943
#> Theta3 for field -0.12 0.268 -0.721 -0.093
#> 0.975quant mode
#> Precision for the Gaussian observations 342.064 113.162
#> Theta1 for field -2.652 -4.094
#> Theta2 for field 3.336 2.947
#> Theta3 for field 0.314 0.037
#>
#> Marginal log-Likelihood: -108.72
#> is computed
#> Posterior summaries for the linear predictor and the fitted values are computed
#> (Posterior marginals needs also 'control.compute=list(return.marginals.predictor=TRUE)')
#>
# devel.tag
# }