Package index
-
rSPDE
rSPDE-package
- Rational approximations of fractional SPDEs.
-
rspde.matern()
- Matern rSPDE model object for INLA
-
rspde.metric_graph()
- Matern rSPDE model object for metric graphs in INLA
-
matern.operators()
- Rational approximations of stationary Gaussian Matern random fields
-
spde.matern.operators()
- Rational approximations of non-stationary Gaussian SPDE Matern random fields
-
fractional.operators()
- Rational approximations of fractional operators
-
matern.rational()
- Rational approximation of the Matern fields on intervals and metric graphs
-
rspde_lme()
- rSPDE linear mixed effects models
-
predict(<rspde_lme>)
- Prediction of a mixed effects regression model on a metric graph.
-
summary(<rspde_lme>)
- Summary Method for
rspde_lme
Objects.
-
glance(<rspde_lme>)
- Glance at an
rspde_lme
object
-
augment(<rspde_lme>)
- Augment data with information from a
rspde_lme
object
-
intrinsic.matern.operators()
- Covariance-based approximations of intrinsic fields
-
variogram.intrinsic.spde()
- Variogram of intrinsic SPDE model
-
rspde.intrinsic.matern()
- Intrinsic Matern rSPDE model object for INLA
-
simulate(<intrinsicCBrSPDEobj>)
- Simulation of a fractional intrinsic SPDE using the covariance-based rational SPDE approximation
-
rSPDE.matern.loglike()
- Object-based log-likelihood function for latent Gaussian fractional SPDE model using the rational approximations
-
rSPDE.loglike()
- Object-based log-likelihood function for latent Gaussian fractional SPDE model
-
spde.matern.loglike()
- Parameter-based log-likelihood for a latent Gaussian Matern SPDE model using a rational SPDE approximation
-
rSPDE.construct.matern.loglike()
- Constructor of Matern loglikelihood functions.
-
construct.spde.matern.loglike()
- Constructor of Matern loglikelihood functions for non-stationary models.
-
rspde.matern.precision()
- Precision matrix of the covariance-based rational approximation of stationary Gaussian Matern random fields
-
rspde.matern.precision.integer()
- Precision matrix of stationary Gaussian Matern random fields with integer covariance exponent
-
predict(<rSPDEobj>)
- Prediction of a fractional SPDE using a rational SPDE approximation
-
simulate(<rSPDEobj>)
- Simulation of a fractional SPDE using a rational SPDE approximation
-
summary(<rSPDEobj>)
print(<summary.rSPDEobj>)
print(<rSPDEobj>)
- Summarise rSPDE objects
-
update(<rSPDEobj>)
- Update parameters of rSPDEobj objects
-
predict(<CBrSPDEobj>)
- Prediction of a fractional SPDE using the covariance-based rational SPDE approximation
-
simulate(<CBrSPDEobj>)
- Simulation of a fractional SPDE using the covariance-based rational SPDE approximation
-
summary(<CBrSPDEobj>)
print(<summary.CBrSPDEobj>)
print(<CBrSPDEobj>)
- Summarise CBrSPDE objects
-
update(<CBrSPDEobj>)
- Update parameters of CBrSPDEobj objects
-
precision()
- Get the precision matrix of CBrSPDEobj objects
-
simulate(<rSPDEobj1d>)
- Simulation of a Matern field using a rational SPDE approximation
-
summary(<rSPDEobj1d>)
print(<summary.rSPDEobj1d>)
print(<rSPDEobj1d>)
- Summarise rSPDE objects without FEM
-
update(<rSPDEobj1d>)
- Update parameters of rSPDEobj1d objects
-
precision(<rSPDEobj1d>)
- Get the precision matrix of rSPDEobj1d objects
-
rspde.make.A()
- Observation/prediction matrices for rSPDE models.
-
spde.make.A()
- Observation/prediction matrices for rSPDE models with integer smoothness.
-
rspde.make.index()
- rSPDE model index vector generation
-
graph_data_rspde()
- Data extraction from metric graphs for 'rSPDE' models
-
rspde.mesh.project()
rspde.mesh.projector()
- Calculate a lattice projection to/from an
inla.mesh
for rSPDE objects
-
rspde.result()
- rSPDE result extraction from INLA estimation results
-
summary(<rspde_result>)
- Summary for posteriors of field parameters for an
inla_rspde
model from arspde_result
object
-
precision(<inla_rspde>)
- Get the precision matrix of
inla_rspde
objects
-
gg_df()
- Data frame for result objects from R-INLA fitted models to be used in ggplot2
-
gg_df(<rspde_result>)
- Data frame for rspde_result objects to be used in ggplot2
-
cross_validation()
- Perform cross-validation on a list of fitted models.
-
group_predict()
- Perform prediction on a testing set based on a training set
-
rSPDE.A1d()
- Observation matrix for finite element discretization on R
-
rSPDE.fem1d()
- Finite element calculations for problems on R
-
rSPDE.fem2d()
- Finite element calculations for problems in 2D
-
create_train_test_indices()
- Create train and test splits to be used in the
cross_validation
function
-
get.initial.values.rSPDE()
- Initial values for log-likelihood optimization in rSPDE models with a latent stationary Gaussian Matern model
-
require.nowarnings()
- Warnings free loading of add-on packages
-
matern.covariance()
- The Matern covariance function
-
matern.rational.cov()
- Rational approximation of the Matern covariance
-
folded.matern.covariance.1d()
- The 1d folded Matern covariance function
-
folded.matern.covariance.2d()
- The 2d folded Matern covariance function
-
rspde.matern.precision.opt()
- Optimized precision matrix of the covariance-based rational approximation
-
rspde.matern.precision.integer.opt()
- Optimized precision matrix of stationary Gaussian Matern random fields with integer covariance exponent
-
`rational.order<-`()
- Changing the order of the rational approximation
-
`rational.type<-`()
- Changing the type of the rational approximation
-
rational.order()
- Get the order of rational approximation.
-
rational.type()
- Get type of rational approximation.
-
Pr.mult()
Pr.solve()
Pl.mult()
Pl.solve()
Q.mult()
Q.solve()
Qsqrt.mult()
Qsqrt.solve()
Sigma.mult()
Sigma.solve()
- Operations with the Pr and Pl operators