
Initial values for log-likelihood optimization in rSPDE models with a latent stationary Gaussian Matern model
Source:R/util.R
get.initial.values.rSPDE.RdAuxiliar function to obtain domain-based initial values for log-likelihood optimization in rSPDE models with a latent stationary Gaussian Matern model
Usage
get.initial.values.rSPDE(
mesh = NULL,
mesh.range = NULL,
graph.obj = NULL,
n.spde = 1,
dim = NULL,
B.tau = NULL,
B.kappa = NULL,
B.sigma = NULL,
B.range = NULL,
nu = NULL,
parameterization = c("matern", "spde"),
include.nu = TRUE,
log.scale = TRUE,
nu.upper.bound = NULL
)Arguments
- mesh
An in INLA mesh
- mesh.range
The range of the mesh.
- graph.obj
A
metric_graphobject. To be used in case bothmeshandmesh.rangeareNULL.- n.spde
The number of basis functions in the mesh model.
- dim
The dimension of the domain.
- B.tau
Matrix with specification of log-linear model for \(\tau\). Will be used if
parameterization = 'spde'.- B.kappa
Matrix with specification of log-linear model for \(\kappa\). Will be used if
parameterization = 'spde'.- B.sigma
Matrix with specification of log-linear model for \(\sigma\). Will be used if
parameterization = 'matern'.- B.range
Matrix with specification of log-linear model for \(\rho\), which is a range-like parameter (it is exactly the range parameter in the stationary case). Will be used if
parameterization = 'matern'.- nu
The smoothness parameter.
- parameterization
Which parameterization to use?
maternuses range, std. deviation and nu (smoothness).spdeuses kappa, tau and nu (smoothness). The default ismatern.- include.nu
Should we also provide an initial guess for nu?
- log.scale
Should the results be provided in log scale?
- nu.upper.bound
Should an upper bound for nu be considered?