Rational approximations of stationary anisotropic Gaussian Matern random fields
Source:R/inla_rspde_anisotropic.R
rspde.anistropic2d.Rd
rspde.anistropic2d
computes a Finite Element Method (FEM) approximation of a
Gaussian random field defined as the solution to the stochastic partial
differential equation (SPDE):
$$C(h) = \frac{\sigma^2}{2^{\nu-1}\Gamma(\nu)}(\sqrt{h^T H^{-1}h})^\nu K_\nu(\sqrt{h^T H^{-1}h})$$,
based on a SPDE representation of the form
$$(I - \nabla\cdot(H\nabla))^{(\nu+1)/2}u = c\sigma W$$,
where $c>0$ is a constant. The matrix \(H\) is defined as
$$\begin{bmatrix}
h_x^2 & h_xh_yh_{xy} \\
h_xh_yh_{xy} & h_y^2
\end{bmatrix}$$
Usage
rspde.anistropic2d(
mesh,
nu = NULL,
nu.upper.bound = 2,
rspde.order = 1,
prior.hx = NULL,
prior.hy = NULL,
prior.hxy = NULL,
prior.sigma = NULL,
prior.precision = NULL,
prior.nu = NULL,
prior.nu.dist = "lognormal",
nu.prec.inc = 0.01,
type.rational.approx = "chebfun",
shared_lib = "detect",
debug = FALSE,
...
)
Arguments
- mesh
Spatial mesh for the FEM approximation.
- nu
If nu is set to a parameter, nu will be kept fixed and will not be estimated. If nu is
NULL
, it will be estimated.- nu.upper.bound
Upper bound for the smoothness parameter \(\nu\). If
NULL
, it will be set to 2.- rspde.order
The order of the covariance-based rational SPDE approach. The default order is 1.
- prior.hx
A list specifying the prior for the parameter \(h_x\) in the matrix \(H\). This list may contain two elements:
mean
and/orprecision
, both of which must be numeric scalars. The precision refers to the prior on \(\log(h_x)\). IfNULL
, default values will be used. Themean
value is also used as starting value for hx.- prior.hy
A list specifying the prior for the parameter \(h_y\) in the matrix \(H\). This list may contain two elements:
mean
and/orprecision
, both of which must be numeric scalars. The precision refers to the prior on \(\log(h_x)\). IfNULL
, default values will be used. Themean
value is also used as starting value for hy.- prior.hxy
A list specifying the prior for the parameter \(h_x\) in the matrix \(H\). This list may contain two elements:
mean
and/orprecision
, both of which must be numeric scalars. The precision refers to the prior on \(\log((h_{xy}+1)/(1-h_{xy}))\). IfNULL
, default values will be used. Themean
value is also used as starting value for hxy.- prior.sigma
A list specifying the prior for the variance parameter \(\sigma\). This list may contain two elements:
mean
and/orprecision
, both of which must be numeric scalars. The precision refers to the prior on \(\log(\sigma)\). IfNULL
, default values will be used. Themean
value is also used as starting value for sigma.- prior.precision
A precision matrix for \(\log(h_x), \log(h_y), \log((h_{xy}+1)/(1-h_{xy})), \log(\sigma)\). This matrix replaces the precision element from
prior.kappa
,prior.sigma
,prior.gamma
, andprior.rho
respectively. For dimension 1prior.precision
must be a 4x4 matrix. For dimension 2, \(\rho\) is a vector of length 2, so in this caseprior.precision
must be a 5x5 matrix. IfNULL
, a diagonal precision matrix with default values will be used.- prior.nu
a list containing the elements
mean
andprec
for beta distribution, orloglocation
andlogscale
for a truncated lognormal distribution.loglocation
stands for the location parameter of the truncated lognormal distribution in the log scale.prec
stands for the precision of a beta distribution.logscale
stands for the scale of the truncated lognormal distribution on the log scale. Check details below.- prior.nu.dist
The distribution of the smoothness parameter. The current options are "beta" or "lognormal". The default is "lognormal".
- nu.prec.inc
Amount to increase the precision in the beta prior distribution. Check details below.
- type.rational.approx
Which type of rational approximation should be used? The current types are "chebfun", "brasil" or "chebfunLB".
String specifying which shared library to use for the Cgeneric implementation. Options are "detect", "INLA", or "rSPDE". You may also specify the direct path to a .so (or .dll) file.
- debug
Logical value indicating whether to enable INLA debug mode.
- ...
Additional arguments passed internally for configuration purposes.