Simulation of a fractional SPDE using the covariance-based rational SPDE approximation
Source:R/fractional.computations.R
simulate.CBrSPDEobj2d.Rd
The function samples a Gaussian random field based using the covariance-based rational SPDE approximation.
Usage
# S3 method for class 'CBrSPDEobj2d'
simulate(
object,
nsim = 1,
seed = NULL,
user_nu = NULL,
user_hx = NULL,
user_hy = NULL,
user_hxy = NULL,
user_sigma = NULL,
user_m = NULL,
...
)
Arguments
- object
The covariance-based rational SPDE approximation, computed using
matern2d.operators()
- nsim
The number of simulations.
- seed
An object specifying if and how the random number generator should be initialized (‘seeded’).
- user_nu
If non-null, update the shape parameter of the covariance function.
- user_hx
If non-null, update the hx parameter.
- user_hy
If non-null, update the hy parameter.
- user_hxy
If non-null, update the hxy parameter.
- user_sigma
If non-null, update the standard deviation of the covariance function.
- user_m
If non-null, update the order of the rational approximation, which needs to be a positive integer.
- ...
Currently not used.
Examples
library(fmesher)
n_loc <- 2000
loc_2d_mesh <- matrix(runif(n_loc * 2), n_loc, 2)
mesh_2d <- fm_mesh_2d(loc = loc_2d_mesh, cutoff = 0.03, max.edge = c(0.1, 0.5))
op <- matern2d.operators(mesh = mesh_2d, sigma = 1, nu = 1, hx = 0.1, hy = 0.1, hxy = 0)
u <- simulate(op)