Density, distribution function, quantile function and
random generation for the generalised inverse-Gaussian distribution
with parameters p
, a
and b
.
dgig(x, p, a, b, log = FALSE)
rgig(n, p, a, b, seed = 0)
pgig(q, p, a, b, lower.tail = TRUE, log.p = FALSE)
qgig(prob, p, a, b, lower.tail = TRUE, log.p = FALSE)
vector of quantiles.
parameter p
.
parameters a
and b
. Must be positive.
logical; if TRUE
, probabilities/densities \(p\) are
returned as \(log(p)\).
number of observations.
Seed for the random generation.
logical; if TRUE
, probabilities are \(P[X\leq x]\),
otherwise, \(P[X>x]\).
vector of probabilities.
dgig gives the density, pgig gives the distribution function, qgig gives the quantile function, and rgig generates random deviates.
Invalid arguments will result in return value NaN, with a warning.
The length of the result is determined by n
for rgig.
The generalised inverse-Gaussian distribution has density given by $$f(x; p, a, b) = ((a/b)^{p/2})/(2K_p(\sqrt{ab})) x^{p-1} \exp\{-(a/2)x - (b/2)/x\},$$ where \(K_p\) is modified Bessel function of the second kind of order \(p\), \(x>0\), \(a,b>0\) and \(p\in\mathbb{R}\). See Jørgensen (1982) for further details.
Jørgensen, Bent (1982). Statistical Properties of the Generalized Inverse Gaussian Distribution. Lecture Notes in Statistics. 9. New York–Berlin: Springer-Verlag. doi:10.1007/978-1-4612-5698-4
rgig(20, p = 1, a = 1, b = 1)
#> [1] 2.9444838 4.0846094 4.2805053 0.6471970 4.8549447 3.6693253 1.4053631
#> [8] 0.7797178 4.0738812 0.3014482 2.2481510 6.4813526 1.2021558 1.7445749
#> [15] 2.0771606 0.9553828 2.4208380 1.9821741 5.5704748 4.9754300
pgig(0.4, p = 1, a = 1, b = 1)
#> [1] 0.02956016
qgig(0.8, p = 1, a = 1, b = 1)
#> [1] 4.055929
plot(function(x){dgig(x, p = 1, a = 1, b = 1)}, main =
"Generalised inverse-Gaussian density", ylab = "Probability density",
xlim = c(0,10))