Density, distribution function, quantile function and
random generation for the inverse-Gaussian distribution
with parameters a
and b
.
dig(x, a, b, log = FALSE)
rig(n, a, b, seed = 0)
pig(q, a, b, lower.tail = TRUE, log.p = FALSE)
qig(p, a, b, lower.tail = TRUE, log.p = FALSE)
vector of quantiles.
parameters a
and b
. Must be positive.
logical; if TRUE
, probabilities/densities \(p\) are
returned as \(log(p)\).
number of observations.
Seed for the random generation.
logical; if TRUE
, probabilities are \(P[X\leq x]\),
otherwise, \(P[X>x]\).
vector of probabilities.
dig gives the density, pig gives the distribution function, qig gives the quantile function, and rig generates random deviates.
Invalid arguments will result in return value NaN, with a warning.
The length of the result is determined by n
for rig.
The inverse-Gaussian distribution has density given by $$f(x; a, b) = \frac{\sqrt{b}}{\sqrt{2\pi x^3}}\exp( -\frac{a}{2}x -\frac{b}{2x} + \sqrt{ab}),$$ where \(x>0\) and \(a,b>0\). In this parameterization, \(E(X) = \sqrt{b}/\sqrt{a}\). See Tweedie (1957a, 1957b) for further details.
Tweedie, M. C. K. (1957a). "Statistical Properties of Inverse Gaussian Distributions I". Annals of Mathematical Statistics. 28 (2): 362–377. doi:10.1214/aoms/1177706964
Tweedie, M. C. K. (1957b). "Statistical Properties of Inverse Gaussian Distributions II". Annals of Mathematical Statistics. 28 (3): 696–705. doi:10.1214/aoms/1177706881
rig(100, a = 1, b = 1)
#> [1] 0.9572548 0.5206169 1.2681461 0.4797213 0.7577269 3.7888009 1.7865166
#> [8] 0.4946198 1.2474197 0.7415773 0.1896368 5.0856919 0.4952849 2.2866755
#> [15] 0.1113017 2.5714447 1.9657381 1.9163777 1.0916878 0.5029270 1.8605299
#> [22] 2.1373168 0.5127945 0.7622769 0.2723581 0.1074688 1.0646659 0.9720056
#> [29] 0.3853628 4.3801731 2.2165500 0.7728686 1.2544806 2.9903736 1.5881800
#> [36] 0.4964007 1.1668910 0.1990532 0.1513981 0.2455943 0.2466079 0.7062755
#> [43] 0.3654105 0.3074057 0.2007869 0.6335298 0.5488414 1.4098436 0.7503542
#> [50] 1.0460328 0.2983000 0.2564048 1.8425823 1.0157792 1.3456672 2.1760214
#> [57] 1.0691253 0.3975510 0.1548133 1.1851614 1.5446015 0.4222253 1.3974503
#> [64] 0.2743692 2.2350710 0.8131661 0.4329198 1.1496233 0.3880295 1.6086103
#> [71] 0.6311459 1.7752646 0.3846843 0.1088839 0.6200793 0.4789168 1.7739017
#> [78] 0.4080565 0.5951053 0.4625394 0.6501942 2.9418998 0.2883725 2.8822151
#> [85] 1.4797474 0.7812484 0.2447756 0.2698109 0.2991567 0.2751294 0.9406372
#> [92] 0.8039470 0.1696850 0.4746702 1.1946023 0.9306070 0.1478620 0.2871400
#> [99] 1.3921724 1.0581139
pig(0.4, a = 1, b = 1)
#> [1] 0.2706137
qig(0.8, a = 1, b = 1)
#> [1] 1.447891
plot(function(x){dig(x, a = 1, b = 1)}, main =
"Inverse-Gaussian density", ylab = "Probability density",
xlim = c(0,10))