Constructor of Matern loglikelihood functions for non-stationary models.
Source:R/fractional.computations.R
construct.spde.matern.loglike.Rd
This function evaluates the log-likelihood function for observations of a non-stationary Gaussian process defined as the solution to the SPDE $$(\kappa(s) - \Delta)^\beta (\tau(s)u(s)) = W.$$
The observations are assumed to be generated as \(Y_i = u(s_i) + \epsilon_i\), where \(\epsilon_i\) are iid mean-zero Gaussian variables. The latent model is approximated using a rational approximation of the fractional SPDE model.
Usage
construct.spde.matern.loglike(
object,
Y,
A,
sigma.e = NULL,
mu = 0,
nu = NULL,
m = NULL,
log_scale = TRUE,
return_negative_likelihood = TRUE
)
Arguments
- object
The rational SPDE approximation, computed using
matern.operators()
- Y
The observations, either a vector or a matrix where the columns correspond to independent replicates of observations.
- A
An observation matrix that links the measurement location to the finite element basis.
- sigma.e
IF non-null, the standard deviation of the measurement noise will be kept fixed in the returned likelihood.
- mu
Expectation vector of the latent field (default = 0).
- nu
If non-null, the shape parameter will be kept fixed in the returned likelihood.
- m
If non-null, update the order of the rational approximation, which needs to be a positive integer.
- log_scale
Should the parameters be evaluated in log-scale?
- return_negative_likelihood
Return minus the likelihood to turn the maximization into a minimization?
Value
The log-likelihood function. The parameters of the returned function are given in the order theta, nu, sigma.e, whenever they are available.
Examples
# this example illustrates how the function can be used for maximum
# likelihood estimation
# Sample a Gaussian Matern process on R using a rational approximation
set.seed(123)
sigma.e <- 0.1
n.rep <- 10
n.obs <- 100
n.x <- 51
# create mass and stiffness matrices for a FEM discretization
x <- seq(from = 0, to = 1, length.out = n.x)
fem <- rSPDE.fem1d(x)
tau <- rep(0.5, n.x)
nu <- 0.8
alpha <- nu + 0.5
kappa <- rep(1, n.x)
# Matern parameterization
# compute rational approximation
op <- spde.matern.operators(
loc_mesh = x,
kappa = kappa, tau = tau, alpha = alpha,
parameterization = "spde", d = 1
)
# Sample the model
u <- simulate(op, n.rep)
# Create some data
obs.loc <- runif(n = n.obs, min = 0, max = 1)
A <- rSPDE.A1d(x, obs.loc)
noise <- rnorm(n.obs * n.rep)
dim(noise) <- c(n.obs, n.rep)
Y <- as.matrix(A %*% u + sigma.e * noise)
# define negative likelihood function for optimization using matern.loglike
mlik <- construct.spde.matern.loglike(op, Y, A)
#' #The parameters can now be estimated by minimizing mlik with optim
# \donttest{
# Choose some reasonable starting values depending on the size of the domain
theta0 <- log(c(1 / sqrt(var(c(Y))), sqrt(8), 0.9, 0.01))
# run estimation and display the results
theta <- optim(theta0, mlik)
print(data.frame(
tau = c(tau[1], exp(theta$par[1])), kappa = c(kappa[1], exp(theta$par[2])),
nu = c(nu, exp(theta$par[3])), sigma.e = c(sigma.e, exp(theta$par[4])),
row.names = c("Truth", "Estimates")
))
#> tau kappa nu sigma.e
#> Truth 0.5000000 1.0000000 0.8000000 0.10000000
#> Estimates 0.5179508 0.9054192 0.9432971 0.09920897
# }
# SPDE parameterization
# compute rational approximation
op <- spde.matern.operators(
kappa = kappa, tau = tau, alpha = alpha,
loc_mesh = x, d = 1,
parameterization = "spde"
)
# Sample the model
u <- simulate(op, n.rep)
# Create some data
obs.loc <- runif(n = n.obs, min = 0, max = 1)
A <- rSPDE.A1d(x, obs.loc)
noise <- rnorm(n.obs * n.rep)
dim(noise) <- c(n.obs, n.rep)
Y <- as.matrix(A %*% u + sigma.e * noise)
# define negative likelihood function for optimization using matern.loglike
mlik <- construct.spde.matern.loglike(op, Y, A)
#' #The parameters can now be estimated by minimizing mlik with optim
# \donttest{
# Choose some reasonable starting values depending on the size of the domain
theta0 <- log(c(1 / sqrt(var(c(Y))), sqrt(8), 0.9, 0.01))
# run estimation and display the results
theta <- optim(theta0, mlik)
print(data.frame(
tau = c(tau[1], exp(theta$par[1])), kappa = c(kappa[1], exp(theta$par[2])),
nu = c(nu, exp(theta$par[3])), sigma.e = c(sigma.e, exp(theta$par[4])),
row.names = c("Truth", "Estimates")
))
#> tau kappa nu sigma.e
#> Truth 0.5000000 1.000000 0.8000000 0.10000000
#> Estimates 0.5309221 1.108897 0.9179094 0.09957545
# }