Object-based log-likelihood function for latent Gaussian fractional SPDE model using the rational approximations
Source:R/fractional.computations.R
rSPDE.matern.loglike.Rd
This function evaluates the log-likelihood function for a Gaussian process with a Matern covariance function, that is observed under Gaussian measurement noise: \(Y_i = u(s_i) + \epsilon_i\), where \(\epsilon_i\) are iid mean-zero Gaussian variables. The latent model is approximated using the a rational approximation of the fractional SPDE model corresponding to the Gaussian process.
Usage
rSPDE.matern.loglike(
object,
Y,
A,
sigma.e,
mu = 0,
user_nu = NULL,
user_kappa = NULL,
user_sigma = NULL,
user_range = NULL,
user_tau = NULL,
user_m = NULL
)
Arguments
- object
The rational SPDE approximation, computed using
matern.operators()
- Y
The observations, either a vector or a matrix where the columns correspond to independent replicates of observations.
- A
An observation matrix that links the measurement location to the finite element basis.
- sigma.e
The standard deviation of the measurement noise.
- mu
Expectation vector of the latent field (default = 0).
- user_nu
If non-null, update the shape parameter of the covariance function.
- user_kappa
If non-null, update the range parameter of the covariance function.
- user_sigma
If non-null, update the standard deviation of the covariance function.
- user_range
If non-null, update the range parameter of the covariance function.
- user_tau
If non-null, update the parameter tau.
- user_m
If non-null, update the order of the rational approximation, which needs to be a positive integer.
Examples
# this example illustrates how the function can be used for maximum likelihood estimation
set.seed(123)
# Sample a Gaussian Matern process on R using a rational approximation
nu <- 0.8
kappa <- 5
sigma <- 1
sigma.e <- 0.1
n.rep <- 10
n.obs <- 100
n.x <- 51
range <- 0.2
# create mass and stiffness matrices for a FEM discretization
x <- seq(from = 0, to = 1, length.out = n.x)
fem <- rSPDE.fem1d(x)
tau <- sqrt(gamma(nu) / (sigma^2 * kappa^(2 * nu) *
(4 * pi)^(1 / 2) * gamma(nu + 1 / 2)))
# Compute the covariance-based rational approximation
op_cov <- matern.operators(
loc_mesh = x, nu = nu,
range = range, sigma = sigma, d = 1, m = 2,
parameterization = "matern"
)
# Sample the model
u <- simulate(op_cov, n.rep)
# Create some data
obs.loc <- runif(n = n.obs, min = 0, max = 1)
A <- rSPDE.A1d(x, obs.loc)
noise <- rnorm(n.obs * n.rep)
dim(noise) <- c(n.obs, n.rep)
Y <- as.matrix(A %*% u + sigma.e * noise)
# Define the negative likelihood function for optimization
# using CBrSPDE.matern.loglike
# Notice that we are also using sigma instead of tau, so it can be compared
# to matern.loglike()
mlik_cov <- function(theta, Y, A, op_cov) {
kappa <- exp(theta[1])
sigma <- exp(theta[2])
nu <- exp(theta[3])
return(-rSPDE.matern.loglike(
object = op_cov, Y = Y,
A = A, user_kappa = kappa, user_sigma = sigma,
user_nu = nu, sigma.e = exp(theta[4])
))
}
# The parameters can now be estimated by minimizing mlik with optim
# \donttest{
# Choose some reasonable starting values depending on the size of the domain
theta0 <- log(c(sqrt(8), 1 / sqrt(var(c(Y))), 0.9, 0.01))
# run estimation and display the results
theta <- optim(theta0, mlik_cov,
Y = Y, A = A, op_cov = op_cov,
method = "L-BFGS-B"
)
print(data.frame(
range = c(range, exp(theta$par[1])), sigma = c(sigma, exp(theta$par[2])),
nu = c(nu, exp(theta$par[3])), sigma.e = c(sigma.e, exp(theta$par[4])),
row.names = c("Truth", "Estimates")
))
#> range sigma nu sigma.e
#> Truth 0.200000 1.000000 0.8000000 0.10000000
#> Estimates 2.828427 1.032637 0.8914999 0.09829063
# }