Generates a list of named index vectors for an rSPDE model.
Usage
rspde.make.index(
  name,
  n.spde = NULL,
  n.group = 1,
  n.repl = 1,
  mesh = NULL,
  rspde.order = 1,
  nu = NULL,
  dim = NULL
)Arguments
- name
- A character string with the base name of the effect. 
- n.spde
- The number of basis functions in the mesh model. 
- n.group
- The size of the group model. 
- n.repl
- The total number of replicates. 
- mesh
- An - inla.mesh, an- inla.mesh.1dobject or a- metric_graphobject.
- rspde.order
- The order of the rational approximation 
- nu
- If - NULL, then the model will assume that nu will be estimated. If nu is fixed, you should provide the value of nu.
- dim
- the dimension of the domain. Should only be provided if - meshis not provided.
Value
A list of named index vectors.
- name
- Indices into the vector of latent variables 
- name.group
- 'group' indices 
- name.repl
- Indices for replicates 
Examples
# \donttest{
# devel version
if (requireNamespace("INLA", quietly = TRUE)) {
  library(INLA)
  set.seed(123)
  m <- 100
  loc_2d_mesh <- matrix(runif(m * 2), m, 2)
  mesh_2d <- inla.mesh.2d(
    loc = loc_2d_mesh,
    cutoff = 0.05,
    max.edge = c(0.1, 0.5)
  )
  sigma <- 1
  range <- 0.2
  nu <- 0.8
  kappa <- sqrt(8 * nu) / range
  op <- matern.operators(
    mesh = mesh_2d, nu = nu,
    range = range, sigma = sigma, m = 2,
    parameterization = "matern"
  )
  u <- simulate(op)
  A <- inla.spde.make.A(
    mesh = mesh_2d,
    loc = loc_2d_mesh
  )
  sigma.e <- 0.1
  y <- A %*% u + rnorm(m) * sigma.e
  Abar <- rspde.make.A(mesh = mesh_2d, loc = loc_2d_mesh)
  mesh.index <- rspde.make.index(name = "field", mesh = mesh_2d)
  st.dat <- inla.stack(
    data = list(y = as.vector(y)),
    A = Abar,
    effects = mesh.index
  )
  rspde_model <- rspde.matern(
    mesh = mesh_2d,
    nu.upper.bound = 2
  )
  f <- y ~ -1 + f(field, model = rspde_model)
  rspde_fit <- inla(f,
    data = inla.stack.data(st.dat),
    family = "gaussian",
    control.predictor =
      list(A = inla.stack.A(st.dat))
  )
  result <- rspde.result(rspde_fit, "field", rspde_model)
  summary(result)
}
#>             mean        sd  0.025quant   0.5quant 0.975quant       mode
#> tau    0.0253149 0.0108588  0.00855359  0.0239958  0.0500443  0.0201986
#> kappa 16.7560000 3.1934300 11.38710000 16.4454000 23.8856000 15.8158000
#> nu     0.9429060 0.1282200  0.72476200  0.9304170  1.2206100  0.8866850
# devel.tag
# }
