Extract field and parameter values and distributions for an rspde effect from an inla result object.
Usage
rspde.result(
inla,
name,
rspde,
compute.summary = TRUE,
parameterization = "detect",
n_samples = 5000,
n_density = 1024
)
Arguments
- inla
An
inla
object obtained from a call toinla()
.- name
A character string with the name of the rSPDE effect in the inla formula.
- rspde
The
inla_rspde
object used for the effect in the inla formula.- compute.summary
Should the summary be computed?
- parameterization
If 'detect', the parameterization from the model will be used. Otherwise, the options are 'spde', 'matern' and 'matern2'.
- n_samples
The number of samples to be used if parameterization is different from the one used to fit the model.
- n_density
The number of equally spaced points to estimate the density.
Value
If the model was fitted with matern
parameterization (the default), it returns a list containing:
- marginals.range
Marginal densities for the range parameter
- marginals.log.range
Marginal densities for log(range)
- marginals.std.dev
Marginal densities for std. deviation
- marginals.log.std.dev
Marginal densities for log(std. deviation)
- marginals.values
Marginal densities for the field values
- summary.log.range
Summary statistics for log(range)
- summary.log.std.dev
Summary statistics for log(std. deviation)
- summary.values
Summary statistics for the field values
If compute.summary
is TRUE
, then the list will also contain
- summary.kappa
Summary statistics for kappa
- summary.tau
Summary statistics for tau
If the model was fitted with the spde
parameterization, it returns a list containing:
- marginals.kappa
Marginal densities for kappa
- marginals.log.kappa
Marginal densities for log(kappa)
- marginals.log.tau
Marginal densities for log(tau)
- marginals.tau
Marginal densities for tau
- marginals.values
Marginal densities for the field values
- summary.log.kappa
Summary statistics for log(kappa)
- summary.log.tau
Summary statistics for log(tau)
- summary.values
Summary statistics for the field values
If compute.summary
is TRUE
, then the list will also contain
- summary.kappa
Summary statistics for kappa
- summary.tau
Summary statistics for tau
For both cases, if nu was estimated, then the list will also contain
- marginals.nu
Marginal densities for nu
If nu was estimated and a beta prior was used, then the list will also contain
- marginals.logit.nu
Marginal densities for logit(nu)
- summary.logit.nu
Marginal densities for logit(nu)
If nu was estimated and a truncated lognormal prior was used, then the list will also contain
- marginals.log.nu
Marginal densities for log(nu)
- summary.log.nu
Marginal densities for log(nu)
If nu was estimated and compute.summary
is TRUE
,
then the list will also contain
- summary.nu
Summary statistics for nu
Examples
# \donttest{
# devel version
if (requireNamespace("INLA", quietly = TRUE)) {
library(INLA)
set.seed(123)
m <- 100
loc_2d_mesh <- matrix(runif(m * 2), m, 2)
mesh_2d <- inla.mesh.2d(
loc = loc_2d_mesh,
cutoff = 0.05,
max.edge = c(0.1, 0.5)
)
sigma <- 1
range <- 0.2
nu <- 0.8
kappa <- sqrt(8 * nu) / range
op <- matern.operators(
mesh = mesh_2d, nu = nu,
range = range, sigma = sigma, m = 2,
parameterization = "matern"
)
u <- simulate(op)
A <- inla.spde.make.A(
mesh = mesh_2d,
loc = loc_2d_mesh
)
sigma.e <- 0.1
y <- A %*% u + rnorm(m) * sigma.e
Abar <- rspde.make.A(mesh = mesh_2d, loc = loc_2d_mesh)
mesh.index <- rspde.make.index(name = "field", mesh = mesh_2d)
st.dat <- inla.stack(
data = list(y = as.vector(y)),
A = Abar,
effects = mesh.index
)
rspde_model <- rspde.matern(
mesh = mesh_2d,
nu.upper.bound = 2
)
f <- y ~ -1 + f(field, model = rspde_model)
rspde_fit <- inla(f,
data = inla.stack.data(st.dat),
family = "gaussian",
control.predictor =
list(A = inla.stack.A(st.dat))
)
result <- rspde.result(rspde_fit, "field", rspde_model)
summary(result)
}
#> mean sd 0.025quant 0.5quant 0.975quant mode
#> tau 0.0243786 0.0125423 0.00595438 0.0225684 0.05321 0.0164238
#> kappa 16.9725000 3.4242200 11.53490000 16.5139000 24.91650 15.5208000
#> nu 0.9609790 0.1533270 0.70930000 0.9432280 1.29744 0.8751550
# devel.tag
# }