Function to change the parameters of a CBrSPDEobj object
Usage
# S3 method for class 'CBrSPDEobj'
update(
object,
nu = NULL,
alpha = NULL,
kappa = NULL,
tau = NULL,
sigma = NULL,
range = NULL,
theta = NULL,
m = NULL,
mesh = NULL,
loc_mesh = NULL,
graph = NULL,
range_mesh = NULL,
compute_higher_order = object$higher_order,
parameterization = NULL,
type_rational_approximation = object$type_rational_approximation,
return_block_list = object$return_block_list,
...
)
Arguments
- object
The covariance-based rational SPDE approximation, computed using
matern.operators()
- nu
If non-null, update the shape parameter of the covariance function. Will be used if parameterization is 'matern'.
- alpha
If non-null, update the fractional SPDE order parameter. Will be used if parameterization is 'spde'.
- kappa
If non-null, update the parameter kappa of the SPDE. Will be used if parameterization is 'spde'.
- tau
If non-null, update the parameter tau of the SPDE. Will be used if parameterization is 'spde'.
- sigma
If non-null, update the standard deviation of the covariance function. Will be used if parameterization is 'matern'.
- range
If non-null, update the range parameter of the covariance function. Will be used if parameterization is 'matern'.
- theta
For non-stationary models. If non-null, update the vector of parameters.
- m
If non-null, update the order of the rational approximation, which needs to be a positive integer.
- mesh
An optional inla mesh. Replaces
d
,C
andG
.- loc_mesh
The mesh locations used to construct the matrices C and G. This option should be provided if one wants to use the
rspde_lme()
function and will not provide neither graph nor mesh. Only works for 1d data. Does not work for metric graphs. For metric graphs you should supply the graph using thegraph
argument.- graph
An optional
metric_graph
object. Replacesd
,C
andG
.- range_mesh
The range of the mesh. Will be used to provide starting values for the parameters. Will be used if
mesh
andgraph
areNULL
, and if one of the parameters (kappa or tau for spde parameterization, or sigma or range for matern parameterization) are not provided.- compute_higher_order
Logical. Should the higher order finite element matrices be computed?
- parameterization
If non-null, update the parameterization. Only works for stationary models.
- type_rational_approximation
Which type of rational approximation should be used? The current types are "chebfun", "brasil" or "chebfunLB".
- return_block_list
Logical. For
type = "covariance"
, should the block parts of the precision matrix be returned separately as a list?- ...
Currently not used.
Value
It returns an object of class "CBrSPDEobj. This object contains the
same quantities listed in the output of matern.operators()
.
Examples
# Compute the covariance-based rational approximation of a
# Gaussian process with a Matern covariance function on R
kappa <- 10
sigma <- 1
nu <- 0.8
range <- sqrt(8 * nu) / kappa
# create mass and stiffness matrices for a FEM discretization
x <- seq(from = 0, to = 1, length.out = 101)
fem <- rSPDE.fem1d(x)
# compute rational approximation of covariance function at 0.5
op_cov <- matern.operators(
loc_mesh = x, nu = nu,
range = range, sigma = sigma, d = 1, m = 2,
parameterization = "matern"
)
op_cov
#> Type of approximation: Covariance-Based Matern SPDE Approximation
#> Parameterization: matern
#> Type of rational approximation: chebfun
#> Parameters of covariance function: range = 0.2529822 , sigma = 1 , nu = 0.8
#> Order or rational approximation: 2
#> Size of discrete operators: 101 x 101
#> Stationary Model
# Update the range parameter of the model:
op_cov <- update(op_cov, kappa = 20)
op_cov
#> Type of approximation: Covariance-Based Matern SPDE Approximation
#> Parameterization: matern
#> Type of rational approximation: chebfun
#> Parameters of covariance function: range = 0.2529822 , sigma = 1 , nu = 0.8
#> Order or rational approximation: 2
#> Size of discrete operators: 101 x 101
#> Stationary Model