Skip to contents

Function to change the parameters of a rSPDEobj1d object

Usage

# S3 method for class 'rSPDEobj1d'
update(
  object,
  nu = NULL,
  alpha = NULL,
  kappa = NULL,
  tau = NULL,
  sigma = NULL,
  range = NULL,
  theta = NULL,
  m = NULL,
  loc = NULL,
  graph = NULL,
  parameterization = NULL,
  type_rational_approximation = object$type_rational_approximation,
  ...
)

Arguments

object

The covariance-based rational SPDE approximation, computed using matern.rational()

nu

If non-null, update the shape parameter of the covariance function. Will be used if parameterization is 'matern'.

alpha

If non-null, update the fractional SPDE order parameter. Will be used if parameterization is 'spde'.

kappa

If non-null, update the parameter kappa of the SPDE. Will be used if parameterization is 'spde'.

tau

If non-null, update the parameter tau of the SPDE. Will be used if parameterization is 'spde'.

sigma

If non-null, update the standard deviation of the covariance function. Will be used if parameterization is 'matern'.

range

If non-null, update the range parameter of the covariance function. Will be used if parameterization is 'matern'.

theta

For non-stationary models. If non-null, update the vector of parameters.

m

If non-null, update the order of the rational approximation, which needs to be a positive integer.

loc

The locations of interest for evaluating the model.

graph

An optional metric_graph object.

parameterization

If non-null, update the parameterization.

type_rational_approximation

Which type of rational approximation should be used? The current types are "chebfun", "brasil" or "chebfunLB".

...

Currently not used.

Value

It returns an object of class "rSPDEobj1d". This object contains the same quantities listed in the output of matern.rational().

Examples


s <- seq(from = 0, to = 1, length.out = 101)
kappa <- 20
sigma <- 2
nu <- 0.8
r <- sqrt(8*nu)/kappa #range parameter
op_cov <- matern.rational(loc = s, nu = nu, range = r, sigma = sigma, m = 2, 
parameterization = "matern")
cov1 <- op_cov$covariance(ind = 1)
op_cov <- update(op_cov, range = 0.2)
cov2 <- op_cov$covariance(ind = 1)
plot(s, cov1, type = "l")
lines(s, cov2, col = 2)