Skip to contents

Introduction

Networks such as street or river networks are examples of metric graphs. A compact metric graph Γ\Gamma consists of a set of finitely many vertices 𝒱={vi}\mathcal{V}=\{v_i\} and a finite set ={ej}\mathcal{E}=\{e_j\} of edges connecting the vertices. Each edge ee is a curve of finite length lel_e that connects two vertices. These curves are parameterized by arc length and a location sΓs\in \Gamma is a position on an edge, and can thus be represented as a touple (e,t)(e,t) where t[0,le]t\in[0,l_e]. Compared to regular graphs, where one typically defines functions on the vertices, we are for metric graphs interested in function that are defined on both the vertices and the edges.

In this vignette we will introduce the metric_graph class of the MetricGraph package. This class provides a user friendly representation of metric graphs, and we will show how to use the class to construct and visualize metric graphs, add data to them, and work with functions defined on the graphs.

For details about Gaussian processes and inference on metric graphs, we refer to the Vignettes

Constructing metric graphs

Basic constructions and properties

A metric graph can be constructed in two ways. The first is to specify all edges in the graph as a list object, where each entry is a matrix. To illustrate this, we first construct the following edges

edge1 <- rbind(c(0,0),c(1,0))
edge2 <- rbind(c(0,0),c(0,1))
edge3 <- rbind(c(0,1),c(-1,1))
theta <- seq(from=pi,to=3*pi/2,length.out = 50)
edge4 <- cbind(sin(theta),1+ cos(theta))
edges = list(edge1, edge2, edge3, edge4)

We can now create the graph based on the edges object as follows

graph <- metric_graph$new(edges = edges)
graph$plot()

The plot function that was used to create the plot above has various parameters to set the sizes and colors of the vertices and edges, and it has a plotly argument to visualize the graph in 3D. For this to work, the plotly library must be installed.

graph$plot(type = "plotly", vertex_size = 5, vertex_color = "blue",
           edge_color = "red", edge_width = 2)

It is also important to know that the 2d version of the plot() method returns a ggplot2 object and can be modified as such. For instance:

p <- graph$plot()
p + ggplot2::labs(title = "Metric graph",
          x = "long", y = "lat")

Similarly, the 3d version of the plot() method returns a plotly object that can also be modified. For instance:

p <- graph$plot(type = "plotly")
p <- plotly::layout(p, title = "Metric graph", 
              scene = list(xaxis=
              list(title = "Long"),yaxis=list(title = "Lat")))
p

We can now obtain various properties of the graph: The vertex matrix, which specifies the Euclidian coordinates of the vertices is

graph$V
##       X Y
## [1,]  0 0
## [2,]  1 0
## [3,]  0 1
## [4,] -1 1

and the edge matrix that specified the edges of the graph (i.e., which vertices that are connected by edges) is

graph$E
##      [,1] [,2]
## [1,]    1    2
## [2,]    1    3
## [3,]    3    4
## [4,]    1    4

To obtain the geodesic (shortest path) distance between the vertices, we can use the function compute_geodist:

graph$compute_geodist()
graph$geo_dist
## $.vertices
##          [,1]     [,2] [,3]     [,4]
## [1,] 0.000000 1.000000    1 1.570729
## [2,] 1.000000 0.000000    2 2.570729
## [3,] 1.000000 2.000000    0 1.000000
## [4,] 1.570729 2.570729    1 0.000000

The second option it to construct the graph using two matrices V and E that specify the locations (in Euclidean space) of the vertices and the edges. In this case, it is assumed that the graph only has straight edges:

V <- rbind(c(0, 0), c(1, 0), c(0, 1), c(-1, 1))
E <- rbind(c(1, 2), c(1, 3), c(3, 4), c(4, 1))
graph2 <- metric_graph$new(V = V, E = E)
## Starting graph creation...
## LongLat is set to FALSE
## Creating edges...
## Setting edge weights...
## Computing bounding box...
## Setting up edges
## Merging close vertices
## Total construction time: 0.17 secs
## Creating and updating vertices...
## Storing the initial graph...
## Computing the relative positions of the edges...
graph2$plot()

A third option is to create a graph from a SpatialLines object:

library(sp)
line1 <- Line(rbind(c(0,0),c(1,0)))
line2 <- Line(rbind(c(0,0),c(0,1)))
line3 <- Line(rbind(c(0,1),c(-1,1)))
theta <- seq(from=pi,to=3*pi/2,length.out = 50)
line4 <- Line(cbind(sin(theta),1+ cos(theta)))
Lines = sp::SpatialLines(list(Lines(list(line1),ID="1"),
                              Lines(list(line2),ID="2"),
                              Lines(list(line3),ID="3"),
                              Lines(list(line4),ID="4")))

graph <- metric_graph$new(edges = Lines)                    
graph$plot()

A final option is to create from a MULTILINESTRING object:

library(sf)
line1 <- st_linestring(rbind(c(0,0),c(1,0)))
line2 <- st_linestring(rbind(c(0,0),c(0,1)))
line3 <- st_linestring(rbind(c(0,1),c(-1,1)))
theta <- seq(from=pi,to=3*pi/2,length.out = 50)
line4 <- st_linestring(cbind(sin(theta),1+ cos(theta)))
multilinestring = st_multilinestring(list(line1, line2, line3, line4))

graph <- metric_graph$new(edges = multilinestring)                    
graph$plot()

Tolerances for merging vertices and edges

The constructor of the graph has one argument, perform_merges and an additional argument tolerance which is used for connecting edges that are close in Euclidean space. Specifically, the tolerance argument is given as a list with three elements:

  • vertex_vertex vertices that are closer than this number are merged (the default value is 1e-7)
  • vertex_edge if a vertex at the end of one edge is closer than this number to another edge, this vertex is connected to that edge (the default value is 1e-7)
  • edge_edge if two edges at some point are closer than this number, a new vertex is added at that point and the two edges are connected (the default value is 0 which means that the option is not used)

These options are often needed when constructing graphs based on real data, for example from OpenStreetMap as we will see later. To illustrate these options, suppose that we want to construct a graph from the following three edges. We will set perform_merges to TRUE, to show how they are merged with the default choice of tolerances.

edge1 <- rbind(c(0,0),c(1,0))
edge2 <- rbind(c(0,0.03),c(0,0.75))
edge3 <- rbind(c(-1,1),c(0.5,0.03))
edge4 <- rbind(c(0,0.75), c(0,1))
edge5 <- rbind(c(-1,0), c(-1, 0.9995))
edges =  list(edge1, edge2, edge3, edge4, edge5)
graph3 <- metric_graph$new(edges = edges, perform_merges = TRUE)
graph3$plot(degree = TRUE)
print(graph3$nV)
## [1] 8

We added the option degree=TRUE to the plot here to visualize the degrees of each vertex. As expected, one sees that all vertices have degree 1, and none of the three edges are connected. If these are streets in a street network, one might suspect that the two vertices at (0,0)(0,0) and (0,0.03)(0,0.03) really should be the same vertex so that the two edges are connected. This can be adjusted by increasing the vertex_vertex tolerance:

graph3 <- metric_graph$new(edges = edges, perform_merges = TRUE,
                             tolerance = list(vertex_vertex = 0.05))
graph3$plot(degree = TRUE)

One might also want to add the vertex at (0.5,0.03)(0.5, 0.03) as a vertex on the first edge, so that the two edges there are connected. This can be done by adjusting the vertex_edge tolerance:

graph3 <- metric_graph$new(edges = edges, perform_merges = TRUE,
                                       tolerance = list(vertex_vertex = 0.05,
                                                           vertex_edge = 0.1))
graph3$plot(degree = TRUE)

We can see that the vertex at (0.5,0)(0.5,0) was indeed connected with the edge from (0,0)(0,0) to (1,0)(1,0) and that vertex now has degree 3 since it is connected with three edges. One can also note that the edges object that was used to create the graph is modified internally in the metric_graph object so that the connections are visualized correctly in the sense that all edges are actually shown as connected edges.

Finally, to add a vertex at the intersection between edge2 and edge3 we can adjust the edge_edge tolerance:

graph3 <- metric_graph$new(edges = edges, perform_merges = TRUE,
                                        tolerance = list(vertex_vertex = 0.2,
                                                           vertex_edge = 0.1,
                                                           edge_edge = 0.001))
graph3$plot(degree = TRUE)

Now, the structure of the metric graph does not change if we add or remove vertices of degree 2. Because of this,one might want to remove vertices of degree 2 since this can reduce computational costs. This can be done by setting the remove_deg2 argument while creating the graph:

graph3 <- metric_graph$new(edges = edges, perform_merges = TRUE,
                                        tolerance = list(vertex_vertex = 0.2,
                                                           vertex_edge = 0.1,
                                                           edge_edge = 0.001),
                           remove_deg2 = TRUE)
graph3$plot(degree = TRUE)

Observe that one vertex of degree 2 was not removed. This is due to the fact that if we consider the direction, this vertex has directions incompatible for removal. We can see this by setting the argument direction=TRUE in the plot() method:

graph3$plot(direction = TRUE)

We can also avoid performing these merges by setting using the default constructor (which is equivalent to set the perform_merges argument to FALSE):

graph4 <- metric_graph$new(edges = edges)
graph4$plot(degree = TRUE)

Observe that the two vertices around the point (1,1)(-1,1) were merged. This is because there is an additional step to merge close vertices that is performed even with perform_merges set to FALSE. To also skip this merge, we can also set merge_close_vertices to FALSE:

graph4 <- metric_graph$new(edges = edges, merge_close_vertices=FALSE)
graph4$plot(degree = TRUE)

We can see now that the two vertices around the point (1,1)(-1,1) were not merged.

Edge lengths

Whenever we create a metric graph, the edge lengths will be automatically computed by obtaining the lengths of the edges. However, sometimes one might want to provide manual edge lengths.

Let us consider the following example:

library(sp)
line1 <- Line(rbind(c(0,0),c(1,0)))
line2 <- Line(rbind(c(0,0),c(0,1)))
line3 <- Line(rbind(c(0,1),c(-1,1)))
theta <- seq(from=pi,to=3*pi/2,length.out = 25)
line4 <- Line(cbind(sin(theta),1+ cos(theta)))
Lines = sp::SpatialLines(list(Lines(list(line1),ID="1"),
                              Lines(list(line2),ID="2"),
                              Lines(list(line3),ID="3"),
                              Lines(list(line4),ID="4")))

graph <- metric_graph$new(edges = Lines)                 
graph$plot()

We can obtain the edge lenghts by using the get_edge_lengths() method:

graph$get_edge_lengths()
## [1] 1.000000 1.000000 1.000000 1.570516

Observer that we know that the actual length of edge 4 is π/2\pi/2, which is not quite right (observe that edge 4 is an approximation of a quarter of a circle by a polygon with 25 points):

pi/2 - graph$get_edge_lengths()[4]
## [1] 0.0002803513

We can provide the actual edge lengths, by using the set_manual_edge_lengths() method:

graph$set_manual_edge_lengths(c(1,1,1,pi/2))
graph$get_edge_lengths()
## [1] 1.000000 1.000000 1.000000 1.570796

We can also manually provide the edge lengths when creating the metric graph:

graph <- metric_graph$new(edges = Lines, manual_edge_lengths = c(1,1,1,pi/2))
graph$get_edge_lengths() 
## [1] 1.000000 1.000000 1.000000 1.570796

However, it is important to note that if one passes the manual_edge_lengths when creating the graph, it will automatically set perform_merges to FALSE, as there is no consistent way to obtain the edge lengths after the merges from the manual edge lengths. Nevertheless, merge_close_vertices can be set to TRUE.

Characteristics of the graph

A brief summary of the main characteristics of the graph can be obtained by the compute_characteristics() method:

graph3$compute_characteristics()

We can, then, view those characteristics by simply printing the metric_graph object:

graph3
## A metric graph with  6  vertices and  6  edges.
## 
## Vertices:
##   Degree 1: 3;  Degree 2: 1;  Degree 3: 1;  Degree 4: 1; 
##   With incompatible directions:  1 
## 
## Edges: 
##   Lengths: 
##       Min: 0.3533333  ; Max: 2.190873  ; Total: 4.788107 
##   Weights: 
##       Min: 1  ; Max: 1 
##   That are circles:  0 
## 
## Graph units: 
##   Vertices unit:  None  ; Lengths unit:  None 
## 
## Longitude and Latitude coordinates:  FALSE
## 
## Some characteristics of the graph:
##   Connected: TRUE
##   Has loops: FALSE
##   Has multiple edges: FALSE
##   Is a tree: FALSE
##   Distance consistent: unknown
## To check if the graph satisfies the distance consistency, run the `check_distance_consistency()` method.
##   Has Euclidean edges: unknown
## To check if the graph has Euclidean edges, run the `check_euclidean()` method.

Observe that we do not know that the graph has Euclidean edges. We can check by using the check_euclidean() method:

graph3$check_euclidean()

Let us view the characteristics again:

graph3
## A metric graph with  6  vertices and  6  edges.
## 
## Vertices:
##   Degree 1: 3;  Degree 2: 1;  Degree 3: 1;  Degree 4: 1; 
##   With incompatible directions:  1 
## 
## Edges: 
##   Lengths: 
##       Min: 0.3533333  ; Max: 2.190873  ; Total: 4.788107 
##   Weights: 
##       Min: 1  ; Max: 1 
##   That are circles:  0 
## 
## Graph units: 
##   Vertices unit:  None  ; Lengths unit:  None 
## 
## Longitude and Latitude coordinates:  FALSE
## 
## Some characteristics of the graph:
##   Connected: TRUE
##   Has loops: FALSE
##   Has multiple edges: FALSE
##   Is a tree: FALSE
##   Distance consistent: TRUE
##   Has Euclidean edges: TRUE

It can happen that we have that the graph does not have Euclidean edges without the need to check the distance consistency. However, if one wants to check if the graph satisfies the distance consistency assumption, one can run the check_distance_consistency() function:

graph3$check_distance_consistency()

Further, the individual characteristics can be accessed (after running the compute_characteristics() method) through the characteristics component of the graph object:

graph3$characteristics
## $has_loops
## [1] FALSE
## 
## $connected
## [1] TRUE
## 
## $has_multiple_edges
## [1] FALSE
## 
## $is_tree
## [1] FALSE
## 
## $distance_consistency
## [1] TRUE
## 
## $euclidean
## [1] TRUE

Summaries of metric graphs

We can also obtain a summary of the informations contained on a metric graph object by using the summary() method. Let us obtain a summary of informations of graph3:

summary(graph3)
## A metric graph object with:
## 
## Vertices:
##   Total: 6 
##   Degree 1: 3;  Degree 2: 1;  Degree 3: 1;  Degree 4: 1; 
##   With incompatible directions:  1 
## 
## Edges: 
##   Total: 6 
##   Lengths: 
##       Min: 0.3533333  ; Max: 2.190873  ; Total: 4.788107 
##   Weights: 
##       Min: 1  ; Max: 1 
##   That are circles:  0 
## 
## Graph units: 
##   Vertices unit:  None  ; Lengths unit:  None 
## 
## Longitude and Latitude coordinates:  FALSE
## 
## Some characteristics of the graph:
##   Connected: TRUE
##   Has loops: FALSE
##   Has multiple edges: FALSE
##   Is a tree: FALSE
##   Distance consistent: TRUE
##   Has Euclidean edges: TRUE
## 
## Computed quantities inside the graph: 
##   Laplacian:  FALSE  ; Geodesic distances:  TRUE 
##   Resistance distances:  FALSE  ; Finite element matrices:  FALSE 
## 
## Mesh: The graph has no mesh! 
## 
## Data: The graph has no data!
## 
## Tolerances: 
##   vertex-vertex:  0.2 
##   vertex-edge:  0.1 
##   edge-edge:  0.001

Observe that there are some quantities that were not computed on the summary. We can see how to compute them by setting the argument messages to TRUE:

summary(graph3, messages = TRUE)
## A metric graph object with:
## 
## Vertices:
##   Total: 6 
##   Degree 1: 3;  Degree 2: 1;  Degree 3: 1;  Degree 4: 1; 
##   With incompatible directions:  1 
## 
## Edges: 
##   Total: 6 
##   Lengths: 
##       Min: 0.3533333  ; Max: 2.190873  ; Total: 4.788107 
##   Weights: 
##       Min: 1  ; Max: 1 
##   That are circles:  0 
## 
## Graph units: 
##   Vertices unit:  None  ; Lengths unit:  None 
## 
## Longitude and Latitude coordinates:  FALSE
## 
## Some characteristics of the graph:
##   Connected: TRUE
##   Has loops: FALSE
##   Has multiple edges: FALSE
##   Is a tree: FALSE
##   Distance consistent: TRUE
##   Has Euclidean edges: TRUE
## 
## Computed quantities inside the graph: 
##   Laplacian:  FALSE  ; Geodesic distances:  TRUE
## To compute the Laplacian, run the 'compute_laplacian()' method.
##   Resistance distances:  FALSE  ; Finite element matrices:  FALSE
## To compute the resistance distances, run the 'compute_resdist()' method.
## To compute the finite element matrices, run the 'compute_fem()' method.
## 
## Mesh: The graph has no mesh!
## To build the mesh, run the 'build_mesh()' method.
## 
## Data: The graph has no data!
## To add observations, use the 'add_observations()' method.
## 
## Tolerances: 
##   vertex-vertex:  0.2 
##   vertex-edge:  0.1 
##   edge-edge:  0.001

Finally, the summary() can also be accessed from the metric graph object:

graph3$summary()
## A metric graph object with:
## 
## Vertices:
##   Total: 6 
##   Degree 1: 3;  Degree 2: 1;  Degree 3: 1;  Degree 4: 1; 
##   With incompatible directions:  1 
## 
## Edges: 
##   Total: 6 
##   Lengths: 
##       Min: 0.3533333  ; Max: 2.190873  ; Total: 4.788107 
##   Weights: 
##       Min: 1  ; Max: 1 
##   That are circles:  0 
## 
## Graph units: 
##   Vertices unit:  None  ; Lengths unit:  None 
## 
## Longitude and Latitude coordinates:  FALSE
## 
## Some characteristics of the graph:
##   Connected: TRUE
##   Has loops: FALSE
##   Has multiple edges: FALSE
##   Is a tree: FALSE
##   Distance consistent: TRUE
##   Has Euclidean edges: TRUE
## 
## Computed quantities inside the graph: 
##   Laplacian:  FALSE  ; Geodesic distances:  TRUE 
##   Resistance distances:  FALSE  ; Finite element matrices:  FALSE 
## 
## Mesh: The graph has no mesh! 
## 
## Data: The graph has no data!
## 
## Tolerances: 
##   vertex-vertex:  0.2 
##   vertex-edge:  0.1 
##   edge-edge:  0.001

Vertices and edges

The metric graph object has the edges and vertices elements in its list. We can get a quick summary from them by calling these elements:

graph3$vertices
## Vertices of the metric graph
## 
## Longitude and Latitude coordinates: FALSE 
## 
## Summary: 
##      x         y Degree Indegree Outdegree Problematic
## 1  0.0 0.0000000      2        0         2        TRUE
## 2  1.0 0.0000000      1        1         0       FALSE
## 3  0.5 0.0300000      3        2         1       FALSE
## 4  0.0 1.0000000      1        1         0       FALSE
## 5 -1.0 0.0000000      1        0         1       FALSE
## 6  0.0 0.3533333      4        2         2       FALSE

and

graph3$edges
## [[1]]
## Edge 1 of the metric graph
## 
## Longitude and Latitude coordinates: FALSE 
## 
## Coordinates of the vertices of the edge: 
##    x    y
##  0.0 0.00
##  0.5 0.03
## 
## Coordinates of the edge:
##    x    y
##  0.0 0.00
##  0.5 0.03
## 
## Relative positions of the edge:
##  Edge number Distance on edge
##            1                0
##            1                1
## 
## Total number of coordinates: 2 
## Edge length: 0.5008992 
## Weight: 1 
## Kirchhoff weight: 1 
## 
## Directional weight: 1 
## 
## 
## [[2]]
## Edge 2 of the metric graph
## 
## Longitude and Latitude coordinates: FALSE 
## 
## Coordinates of the vertices of the edge: 
##  x         y
##  0 0.0000000
##  0 0.3533333
## 
## Coordinates of the edge:
##  x         y
##  0 0.0000000
##  0 0.3533333
## 
## Relative positions of the edge:
##  Edge number Distance on edge
##            2                0
##            2                1
## 
## Total number of coordinates: 2 
## Edge length: 0.3533333 
## Weight: 1 
## Kirchhoff weight: 1 
## 
## Directional weight: 1 
## 
## 
## [[3]]
## Edge 3 of the metric graph
## 
## Longitude and Latitude coordinates: FALSE 
## 
## Coordinates of the vertices of the edge: 
##   x         y
##  -1 0.0000000
##   0 0.3533333
## 
## Coordinates of the edge:
##   x         y
##  -1 0.0000000
##  -1 1.0000000
##   0 0.3533333
## 
## Relative positions of the edge:
##  Edge number Distance on edge
##            3        0.0000000
##            3        0.4564391
##            3        1.0000000
## 
## Total number of coordinates: 3 
## Edge length: 2.190873 
## Weight: 1 
## Kirchhoff weight: 1 
## 
## Directional weight: 1 
## 
## 
## [[4]]
## Edge 4 of the metric graph
## 
## Longitude and Latitude coordinates: FALSE 
## 
## Coordinates of the vertices of the edge: 
##  x         y
##  0 0.3533333
##  0 1.0000000
## 
## Coordinates of the edge:
##  x         y
##  0 0.3533333
##  0 0.7500000
##  0 1.0000000
## 
## Relative positions of the edge:
##  Edge number Distance on edge
##            4        0.0000000
##            4        0.6134021
##            4        1.0000000
## 
## Total number of coordinates: 3 
## Edge length: 0.6466667 
## Weight: 1 
## Kirchhoff weight: 1 
## 
## Directional weight: 1 
## 
## 
## [[5]]
## Edge 5 of the metric graph
## 
## Longitude and Latitude coordinates: FALSE 
## 
## Coordinates of the vertices of the edge: 
##    x         y
##  0.0 0.3533333
##  0.5 0.0300000
## 
## Coordinates of the edge:
##    x         y
##  0.0 0.3533333
##  0.5 0.0300000
## 
## Relative positions of the edge:
##  Edge number Distance on edge
##            5                0
##            5                1
## 
## Total number of coordinates: 2 
## Edge length: 0.5954363 
## Weight: 1 
## Kirchhoff weight: 1 
## 
## Directional weight: 1 
## 
## 
## [[6]]
## Edge 6 of the metric graph
## 
## Longitude and Latitude coordinates: FALSE 
## 
## Coordinates of the vertices of the edge: 
##    x    y
##  0.5 0.03
##  1.0 0.00
## 
## Coordinates of the edge:
##    x    y
##  0.5 0.03
##  1.0 0.00
## 
## Relative positions of the edge:
##  Edge number Distance on edge
##            6                0
##            6                1
## 
## Total number of coordinates: 2 
## Edge length: 0.5008992 
## Weight: 1 
## Kirchhoff weight: 1 
## 
## Directional weight: 1

We can also look at individual edges and vertices. For example, let us look at vertice number 2:

graph3$vertices[[2]]
## Vertex 2 of the metric graph
## 
## Longitude and Latitude coordinates: FALSE 
## 
## Summary: 
##  x y Degree Indegree Outdegree Problematic
##  1 0      1        1         0       FALSE

Similarly, let us look at edge number 4:

graph3$edges[[4]]
## Edge 4 of the metric graph
## 
## Longitude and Latitude coordinates: FALSE 
## 
## Coordinates of the vertices of the edge: 
##  x         y
##  0 0.3533333
##  0 1.0000000
## 
## Coordinates of the edge:
##  x         y
##  0 0.3533333
##  0 0.7500000
##  0 1.0000000
## 
## Relative positions of the edge:
##  Edge number Distance on edge
##            4        0.0000000
##            4        0.6134021
##            4        1.0000000
## 
## Total number of coordinates: 3 
## Edge length: 0.6466667 
## Weight: 1 
## Kirchhoff weight: 1 
## 
## Directional weight: 1

We have a message informing us that the relative positions of the edges were not computed. They are used to produce better plots when using the plot_function() method, see the section “Improving the plot obtained by plot_function” below. To compute the relative positions, we run the compute_PtE_edges() method:

graph3$compute_PtE_edges()

Now, we take a look at edge number 4 again:

graph3$edges[[4]]
## Edge 4 of the metric graph
## 
## Longitude and Latitude coordinates: FALSE 
## 
## Coordinates of the vertices of the edge: 
##  x         y
##  0 0.3533333
##  0 1.0000000
## 
## Coordinates of the edge:
##  x         y
##  0 0.3533333
##  0 0.7500000
##  0 1.0000000
## 
## Relative positions of the edge:
##  Edge number Distance on edge
##            4        0.0000000
##            4        0.6134021
##            4        1.0000000
## 
## Total number of coordinates: 3 
## Edge length: 0.6466667 
## Weight: 1 
## Kirchhoff weight: 1 
## 
## Directional weight: 1

Understanding coordinates on graphs

The locations of the vertices are specified in Euclidean coordinates. However, when specifying a position on the graph, it is not practical to work with Euclidean coordinates since not all locations in Euclidean space are locations on the graph. It is instead better to specify a location on the graph by the touple (i,t)(i, t), where ii denotes the number of the edge and tt is the location on the edge. The location tt can either be specified as the distance from the start of the edge (and then takes values between 0 and the length of the edge) or as the normalized distance from the start of the edge (and then takes values between 0 and 1). The function coordinates can be used to convert between coordinates in Euclidean space and locations on the graph. For example the location at distance 0.2 from the start of the second edge is:

graph$coordinates(PtE = matrix(c(2, 0.2), 1,2), normalized = FALSE)
##      [,1] [,2]
## [1,]    0  0.2

In this case, since the edge has length 1, the location of the point at normalized distance 0.2 from the start of the edge is the same:

graph$coordinates(PtE = matrix(c(2, 0.2), 1,2), normalized = TRUE)
##      [,1] [,2]
## [1,]    0  0.2

The function can also be used to find the closest location on the graph for a location in Euclidean space:

graph$coordinates(XY = matrix(c(0, 0.2), 1,2))
##      [,1] [,2]
## [1,]    2  0.2

In this case, the normalized argument decides whether the returned value should be given in normalized distance or not.

Methods for working with real data

To illustrate the useage of metric_graph on some real data, we use the osmdata package to download data from OpenStreetMap. In the following code, we extract highways for a part of the city of Copenhagen:

library(osmdata)
bbox <- c(12.5900, 55.6000, 12.6850, 55.6450)
call <- opq(bbox)
call <- add_osm_feature(call, key = "highway",value=c("motorway", "primary",
                                                        "secondary", "tertiary"))
data_sf <- osmdata_sf(call)

graph5 <- metric_graph$new(lapply(data_sf$osm_lines$geometry, 
  function(dat){sf::st_coordinates(dat)[,1:2]}))
graph5$plot(vertex_size = 0)

There are a few things to note about data like this. The first is that the coordinates are given in Longitude and Latitude. Because of this, the edge lengths are by default given in degrees, which may result in very small numbers:

range(graph5$get_edge_lengths())
## [1] 0.0001039109 0.0563691328

This may cause numerical instabilities when dealing with random fields on the graph, and it also makes it difficult to interpret results (unless one has a good intuition about distances in degrees). To avoid such problems, it is better to set the longlat argument when constructing the graph:

graph5 <- metric_graph$new(lapply(data_sf$osm_lines$geometry, 
  function(dat){sf::st_coordinates(dat)[,1:2]}), longlat = TRUE)

This tells the constructor that the coordinates are given in Longitude and Latitude and that distances should be calculated in km. So if we now look at the edge lengths, they are given in km:

range(graph5$get_edge_lengths())
## Units: [km]
## [1] 0.001652242 4.053790237

Alternatively, and more conveniently, whenever the sf object has a valid crs, it will automatically use this crs to set the correct coordinate reference system (CRS) in the metric graph. Above, we ended up removing the crs when we created the linestring object from the resulting osm_lines. Let us, instead, build the graph directly using the osmdata_sf object:

graph5 <- metric_graph$new(data_sf)

We can see now that graph5 automatically has the correct CRS:

graph5
## A metric graph with  329  vertices and  346  edges.
## 
## Vertices:
##   Degree 1: 30;  Degree 2: 250;  Degree 3: 36;  Degree 4: 11;  Degree 5: 2; 
##   With incompatible directions:  5 
## 
## Edges: 
##   Lengths: 
##       Min: 0.001652242  ; Max: 4.05379  ; Total: 68.61486 
##   Weights: 
##       Columns: osm_id name alt_name animal_crossing:animal bicycle bridge cycleway cycleway:both cycleway:right cycleway:width destination destination:lanes destination:ref destination:symbol foot hazard highway horse int_ref junction lane_markings lanes lanes:backward lanes:forward layer lit mapillary maxheight maxspeed maxspeed:advisory maxspeed:variable maxweight:signed motorcar name:etymology name:etymology:wikidata name:etymology:wikipedia noname note oneway operator operator:wikidata operator:wikipedia placement priority ref shoulder sidewalk sidewalk:both sidewalk:both:surface sidewalk:left sidewalk:left:surface sidewalk:right sidewalk:right:surface smoothness source:maxspeed start_date surface toll traffic_calming tunnel tunnel:alt_name:da tunnel:alt_name:sv tunnel:name tunnel:name:da tunnel:name:de tunnel:name:en tunnel:name:sv tunnel:official_name turn:lanes turn:lanes:backward turn:lanes:forward width wikidata .weights 
##   That are circles:  0 
## 
## Graph units: 
##   Vertices unit:  degree  ; Lengths unit:  km 
## 
## Longitude and Latitude coordinates:  TRUE
##   Which spatial package:  sp 
##   CRS:  EPSG:4326

This also allows us to plot the graph interactively with the underlying world map, if the data has a coordinate reference system, by setting type = "mapview" in the plot() method:

graph5$plot(type = "mapview", vertex_size = 0)

We can also check the edge lengths:

range(graph5$get_edge_lengths())
## Units: [km]
## [1] 0.001652242 4.053790237

Another advantage of adding the osmdata object, is that the metric graph automatically adds the edge observations as edge_weights:

graph5$get_edge_weights()
## # A tibble: 346 × 74
##    osm_id  name          alt_name animal_crossing:anim…¹ bicycle bridge cycleway
##    <chr>   <chr>         <chr>    <chr>                  <chr>   <chr>  <chr>   
##  1 1525051 Backersvej    NA       NA                     NA      NA     lane    
##  2 1692808 Saltværksvej  NA       NA                     yes     NA     track   
##  3 1698015 NA            NA       NA                     no      NA     NA      
##  4 1700205 Tårnbyvej     NA       NA                     yes     NA     track   
##  5 1754353 Løjtegårdsvej NA       NA                     NA      NA     track   
##  6 1880381 Stenlandsvej  NA       NA                     NA      NA     track   
##  7 1880526 A.P. Møllers… NA       NA                     NA      NA     no      
##  8 2373286 Kastruplundg… NA       NA                     NA      NA     no      
##  9 3431744 Kirstinehøj   NA       NA                     NA      NA     track   
## 10 3431748 Tømmerupvej   NA       NA                     NA      NA     track   
## # ℹ 336 more rows
## # ℹ abbreviated name: ¹​`animal_crossing:animal`
## # ℹ 67 more variables: `cycleway:both` <chr>, `cycleway:right` <chr>,
## #   `cycleway:width` <chr>, destination <chr>, `destination:lanes` <chr>,
## #   `destination:ref` <chr>, `destination:symbol` <chr>, foot <chr>,
## #   hazard <chr>, highway <chr>, horse <chr>, int_ref <chr>, junction <chr>,
## #   lane_markings <chr>, lanes <chr>, `lanes:backward` <chr>, …

We can also let the color of the edges be determined by some edge weight. For example, let us take maxspeed:

graph5$plot(vertex_size = 0, edge_weight = "maxspeed", 
        type="mapview")
## Warning in RColorBrewer::brewer.pal(n = length(levels(edges_sf[[edge_weight]])), : minimal value for n is 3, returning requested palette with 3 different levels
## Warning: Found less unique colors (3) than unique zcol values (6)! 
## Recycling color vector.
## Warning: Found less unique colors (3) than unique zcol values (6)! 
## Recycling color vector.

Similarly, we can also set the edge width based on an edge weight (for this case, we can only use type = "ggplot", which is the default). In this example we will choose the column lanes to determine the edge widths. If the number of lanes is not available, the edge will be removed (we will replace the NAs by zero).

graph5$set_edge_weights(weights = graph5$mutate_weights(lanes = ifelse(is.na(lanes),0,lanes), lanes = as.numeric(lanes)))
graph5$plot(vertex_size = 0, edge_weight = "maxspeed", edge_width_weight = "lanes")

However, observe that the edge widths are always relative, with the largest being set to edge_width. So, let us set edge_width to 4 to make it easier to perceive the differences:

graph5$set_edge_weights(weights = graph5$mutate_weights(lanes = ifelse(is.na(lanes),0,lanes), lanes = as.numeric(lanes)))
graph5$plot(vertex_size = 0, edge_weight = "maxspeed", edge_width_weight = "lanes", edge_width = 4)

If one does not want to have the edge weights added, one must set include_edge_weights to FALSE:

graph5 <- metric_graph$new(data_sf, include_edge_weights=FALSE)
graph5$get_edge_weights()
## # A tibble: 346 × 1
##    .weights
##       <dbl>
##  1        1
##  2        1
##  3        1
##  4        1
##  5        1
##  6        1
##  7        1
##  8        1
##  9        1
## 10        1
## # ℹ 336 more rows

Similarly, if one wants just to add some columns of the osmdata object as edge weights, one can pass a vector with the column names as the include_edge_weights argument. For example, let us only get the columns highway and lanes:

graph5 <- metric_graph$new(data_sf, include_edge_weights=c("highway", "lanes"))
graph5$get_edge_weights()
## # A tibble: 346 × 3
##    highway  lanes .weights
##    <chr>    <chr>    <dbl>
##  1 tertiary NA           1
##  2 tertiary 4            1
##  3 tertiary 1            1
##  4 tertiary 3            1
##  5 tertiary 1            1
##  6 tertiary 2            1
##  7 tertiary 2            1
##  8 tertiary 2            1
##  9 tertiary 3            1
## 10 tertiary 2            1
## # ℹ 336 more rows

The same idea also works is one has an sf object instead. Let us obtain the sf version from the osmdata object:

data_sf <- osmdata_sf(call)

We can now directly create the metric graph object:

graph5 <- metric_graph$new(data_sf)

Let us check that graph5 still has the correct CRS:

graph5
## A metric graph with  329  vertices and  346  edges.
## 
## Vertices:
##   Degree 1: 30;  Degree 2: 250;  Degree 3: 36;  Degree 4: 11;  Degree 5: 2; 
##   With incompatible directions:  5 
## 
## Edges: 
##   Lengths: 
##       Min: 0.001652242  ; Max: 4.05379  ; Total: 68.61486 
##   Weights: 
##       Columns: osm_id name alt_name animal_crossing:animal bicycle bridge cycleway cycleway:both cycleway:right cycleway:width destination destination:lanes destination:ref destination:symbol foot hazard highway horse int_ref junction lane_markings lanes lanes:backward lanes:forward layer lit mapillary maxheight maxspeed maxspeed:advisory maxspeed:variable maxweight:signed motorcar name:etymology name:etymology:wikidata name:etymology:wikipedia noname note oneway operator operator:wikidata operator:wikipedia placement priority ref shoulder sidewalk sidewalk:both sidewalk:both:surface sidewalk:left sidewalk:left:surface sidewalk:right sidewalk:right:surface smoothness source:maxspeed start_date surface toll traffic_calming tunnel tunnel:alt_name:da tunnel:alt_name:sv tunnel:name tunnel:name:da tunnel:name:de tunnel:name:en tunnel:name:sv tunnel:official_name turn:lanes turn:lanes:backward turn:lanes:forward width wikidata .weights 
##   That are circles:  0 
## 
## Graph units: 
##   Vertices unit:  degree  ; Lengths unit:  km 
## 
## Longitude and Latitude coordinates:  TRUE
##   Which spatial package:  sp 
##   CRS:  EPSG:4326

and the correct edge lengths:

range(graph5$get_edge_lengths())
## Units: [km]
## [1] 0.001652242 4.053790237

Also, that it has the edge weights:

graph5$get_edge_weights()
## # A tibble: 346 × 74
##    osm_id  name          alt_name animal_crossing:anim…¹ bicycle bridge cycleway
##    <chr>   <chr>         <chr>    <chr>                  <chr>   <chr>  <chr>   
##  1 1525051 Backersvej    NA       NA                     NA      NA     lane    
##  2 1692808 Saltværksvej  NA       NA                     yes     NA     track   
##  3 1698015 NA            NA       NA                     no      NA     NA      
##  4 1700205 Tårnbyvej     NA       NA                     yes     NA     track   
##  5 1754353 Løjtegårdsvej NA       NA                     NA      NA     track   
##  6 1880381 Stenlandsvej  NA       NA                     NA      NA     track   
##  7 1880526 A.P. Møllers… NA       NA                     NA      NA     no      
##  8 2373286 Kastruplundg… NA       NA                     NA      NA     no      
##  9 3431744 Kirstinehøj   NA       NA                     NA      NA     track   
## 10 3431748 Tømmerupvej   NA       NA                     NA      NA     track   
## # ℹ 336 more rows
## # ℹ abbreviated name: ¹​`animal_crossing:animal`
## # ℹ 67 more variables: `cycleway:both` <chr>, `cycleway:right` <chr>,
## #   `cycleway:width` <chr>, destination <chr>, `destination:lanes` <chr>,
## #   `destination:ref` <chr>, `destination:symbol` <chr>, foot <chr>,
## #   hazard <chr>, highway <chr>, horse <chr>, int_ref <chr>, junction <chr>,
## #   lane_markings <chr>, lanes <chr>, `lanes:backward` <chr>, …

The argument include_edge_weights can also be used in same manner for osmdata_sf objects.

The second thing to note is that the constructor gave a warning that the graph is not connected. This might not be ideal for modeling and we may want to study the different connected components separately. If this is not a concern, one can set the argument check_connected = FALSE while creating the graph. In this case the check is not done and no warning message is printed. To construct all connected components, we can create a graph_components object:

graphs <- graph_components$new(data_sf)

The graph_components class contains a list of metric_graph objects, one for each connected component. In this case, we have

graphs$n
## [1] 4

components in total, and their total edge lengths in km at

graphs$lengths
## Units: [km]
## [1] 47.645159  9.816640  9.810855  1.342207

To plot all of them, we can use the plot command of the class:

graphs$plot(vertex_size = 0, type = "mapview")

One reason for having multiple components here might be that we set the tolerance for merging nodes too low. In fact, by looking at the edge lengths we see that we have vertices that are as close as

min(graph5$get_edge_lengths(unit='m'))
## 1.652242 [m]

meters. Let us increase the tolerances so that vertices that are at most a distance of 100 meters (0.1km) apart should be merged:

graphs <- graph_components$new(data_sf,
                               tolerance = list(vertex_vertex = 0.1))
graphs$plot(vertex_size = 0, type = "mapview")

With this choice, let us check the number of connected components:

graphs$n
## [1] 2

We can retrieve the graph as a standard metric_graph object to work with in further analysis via the get_largest command:

graph5 <- graphs$get_largest()

Let us take a quick look at its vertices and edges:

graph5$vertices
## Vertices of the metric graph
## 
## Longitude and Latitude coordinates: TRUE 
## Coordinate reference system: +proj=longlat +datum=WGS84 +no_defs 
## 
## Summary: 
##    Longitude Latitude Degree Indegree Outdegree Problematic
## 1   12.62782 55.64742      1        0         1       FALSE
## 2   12.62844 55.64436      3        3         0        TRUE
## 3   12.61968 55.63542     10        4         6       FALSE
## 4   12.64288 55.63024     19        9        10       FALSE
## 5   12.62580 55.62302     17        8         9       FALSE
## 6   12.58937 55.64109      2        0         2        TRUE
## 7   12.59120 55.64169     10        5         5       FALSE
## 8   12.66141 55.60655      4        2         2       FALSE
## 9   12.66156 55.60241      2        1         1       FALSE
## 10  12.64146 55.63763      9        4         5       FALSE
## # 87 more rows
## # Use `print(n=...)` to see more rows

and

graph5$edges
## Edges of the metric graph
## 
## Longitude and Latitude coordinates: TRUE 
## Coordinate reference system: +proj=longlat +datum=WGS84 +no_defs 
## 
## Summary: 
## 
## Edge 1 (first and last coordinates): 
##  Longitude Latitude
##   12.62782 55.64742
##   12.62844 55.64436
## Total number of coordinates: 17 
## Edge length: 0.3474824 km 
## Weights: 
##   osm_id       name alt_name animal_crossing:animal bicycle bridge cycleway
##  1525051 Backersvej     <NA>                   <NA>    <NA>   <NA>     lane
##  cycleway:both cycleway:right cycleway:width destination destination:lanes
##           <NA>           <NA>           <NA>        <NA>              <NA>
##  destination:ref destination:symbol foot hazard  highway horse int_ref junction
##             <NA>               <NA> <NA>   <NA> tertiary  <NA>    <NA>     <NA>
##  lane_markings lanes lanes:backward lanes:forward layer lit mapillary maxheight
##           <NA>  <NA>           <NA>          <NA>  <NA> yes      <NA>      <NA>
##  maxspeed maxspeed:advisory maxspeed:variable maxweight:signed motorcar
##        50              <NA>              <NA>             <NA>     <NA>
##         name:etymology name:etymology:wikidata name:etymology:wikipedia noname
##  Peter Gjertsen Backer              Q130367378                     <NA>   <NA>
##  note oneway operator operator:wikidata operator:wikipedia placement priority
##  <NA>   <NA>     <NA>              <NA>               <NA>      <NA>     <NA>
##   ref shoulder sidewalk sidewalk:both sidewalk:both:surface sidewalk:left
##  <NA>     <NA>     both          <NA>                  <NA>          <NA>
##  sidewalk:left:surface sidewalk:right sidewalk:right:surface smoothness
##                   <NA>           <NA>                   <NA>       <NA>
##  source:maxspeed start_date surface toll traffic_calming tunnel
##             <NA>       <NA> asphalt <NA>            <NA>   <NA>
##  tunnel:alt_name:da tunnel:alt_name:sv tunnel:name tunnel:name:da
##                <NA>               <NA>        <NA>           <NA>
##  tunnel:name:de tunnel:name:en tunnel:name:sv tunnel:official_name turn:lanes
##            <NA>           <NA>           <NA>                 <NA>       <NA>
##  turn:lanes:backward turn:lanes:forward width  wikidata .weights
##                 <NA>               <NA>  <NA> Q84085767        1
## 
## Kirchhoff weight: 1 
## 
## Directional weight: 1 
## 
## Edge 2 (first and last coordinates): 
##  Longitude Latitude
##   12.61968 55.63542
##   12.61968 55.63542
## Total number of coordinates: 7 
## Edge length: 0.122317 km 
## Weights: 
##   osm_id         name alt_name animal_crossing:animal bicycle bridge cycleway
##  1692808 Saltværksvej     <NA>                   <NA>     yes   <NA>    track
##  cycleway:both cycleway:right cycleway:width destination destination:lanes
##           <NA>           <NA>           <NA>        <NA>              <NA>
##  destination:ref destination:symbol foot hazard  highway horse int_ref junction
##             <NA>               <NA>  yes   <NA> tertiary  <NA>    <NA>     <NA>
##  lane_markings lanes lanes:backward lanes:forward layer lit mapillary maxheight
##           <NA>     4              3             1  <NA> yes      <NA>      <NA>
##  maxspeed maxspeed:advisory maxspeed:variable maxweight:signed motorcar
##        50              <NA>              <NA>             <NA>     <NA>
##  name:etymology name:etymology:wikidata name:etymology:wikipedia noname note
##            <NA>              Q130262817                     <NA>   <NA> <NA>
##  oneway operator operator:wikidata operator:wikipedia placement priority  ref
##    <NA>     <NA>              <NA>               <NA>      <NA>     <NA> <NA>
##  shoulder sidewalk sidewalk:both sidewalk:both:surface sidewalk:left
##      <NA>     both          <NA>                  <NA>          <NA>
##  sidewalk:left:surface sidewalk:right sidewalk:right:surface smoothness
##                   <NA>           <NA>                   <NA>       <NA>
##  source:maxspeed start_date surface toll traffic_calming tunnel
##         DK:urban       <NA> asphalt <NA>            <NA>   <NA>
##  tunnel:alt_name:da tunnel:alt_name:sv tunnel:name tunnel:name:da
##                <NA>               <NA>        <NA>           <NA>
##  tunnel:name:de tunnel:name:en tunnel:name:sv tunnel:official_name turn:lanes
##            <NA>           <NA>           <NA>                 <NA>       <NA>
##  turn:lanes:backward turn:lanes:forward width wikidata .weights
##   left|through|right               <NA>  <NA>     <NA>        1
## 
## Kirchhoff weight: 1 
## 
## Directional weight: 1 
## 
## Edge 3 (first and last coordinates): 
##  Longitude Latitude
##   12.64288 55.63024
##   12.64288 55.63024
## Total number of coordinates: 10 
## Edge length: 0.1036584 km 
## Weights: 
##   osm_id name alt_name animal_crossing:animal bicycle bridge cycleway
##  1698015 <NA>     <NA>                   <NA>      no   <NA>     <NA>
##  cycleway:both cycleway:right cycleway:width destination destination:lanes
##           <NA>           <NA>           <NA>        <NA>              <NA>
##  destination:ref destination:symbol foot hazard  highway horse int_ref
##             <NA>               <NA>   no   <NA> tertiary  <NA>    <NA>
##    junction lane_markings lanes lanes:backward lanes:forward layer lit
##  roundabout          <NA>     1           <NA>          <NA>  <NA> yes
##  mapillary maxheight maxspeed maxspeed:advisory maxspeed:variable
##       <NA>      <NA>       80              <NA>              <NA>
##  maxweight:signed motorcar name:etymology name:etymology:wikidata
##              <NA>     <NA>           <NA>                    <NA>
##  name:etymology:wikipedia noname note oneway operator operator:wikidata
##                      <NA>    yes <NA>   <NA>     <NA>              <NA>
##  operator:wikipedia placement priority  ref shoulder sidewalk sidewalk:both
##                <NA>      <NA>     <NA> <NA>     <NA>     none          <NA>
##  sidewalk:both:surface sidewalk:left sidewalk:left:surface sidewalk:right
##                   <NA>          <NA>                  <NA>           <NA>
##  sidewalk:right:surface smoothness source:maxspeed start_date surface toll
##                    <NA>       <NA>        DK:rural       <NA> asphalt <NA>
##  traffic_calming tunnel tunnel:alt_name:da tunnel:alt_name:sv tunnel:name
##             <NA>   <NA>               <NA>               <NA>        <NA>
##  tunnel:name:da tunnel:name:de tunnel:name:en tunnel:name:sv
##            <NA>           <NA>           <NA>           <NA>
##  tunnel:official_name turn:lanes turn:lanes:backward turn:lanes:forward width
##                  <NA>       <NA>                <NA>               <NA>  <NA>
##  wikidata .weights
##      <NA>        1
## 
## Kirchhoff weight: 1 
## 
## Directional weight: 1 
## 
## Edge 4 (first and last coordinates): 
##  Longitude Latitude
##   12.61968 55.63542
##   12.61968 55.63542
## Total number of coordinates: 4 
## Edge length: 0.1254914 km 
## Weights: 
##   osm_id      name alt_name animal_crossing:animal bicycle bridge cycleway
##  1700205 Tårnbyvej     <NA>                   <NA>     yes   <NA>    track
##  cycleway:both cycleway:right cycleway:width destination destination:lanes
##           <NA>           <NA>           <NA>        <NA>              <NA>
##  destination:ref destination:symbol foot hazard  highway horse int_ref junction
##             <NA>               <NA>  yes   <NA> tertiary  <NA>    <NA>     <NA>
##  lane_markings lanes lanes:backward lanes:forward layer lit mapillary maxheight
##           <NA>     3              2             1  <NA> yes      <NA>      <NA>
##  maxspeed maxspeed:advisory maxspeed:variable maxweight:signed motorcar
##        50              <NA>              <NA>             <NA>     <NA>
##  name:etymology name:etymology:wikidata name:etymology:wikipedia noname note
##            <NA>                  Q28173                     <NA>   <NA> <NA>
##  oneway operator operator:wikidata operator:wikipedia placement priority  ref
##    <NA>     <NA>              <NA>               <NA>      <NA>     <NA> <NA>
##  shoulder sidewalk sidewalk:both sidewalk:both:surface sidewalk:left
##      <NA>     both          <NA>                  <NA>          <NA>
##  sidewalk:left:surface sidewalk:right sidewalk:right:surface smoothness
##                   <NA>           <NA>                   <NA>       <NA>
##  source:maxspeed start_date surface toll traffic_calming tunnel
##         DK:urban       <NA> asphalt <NA>            <NA>   <NA>
##  tunnel:alt_name:da tunnel:alt_name:sv tunnel:name tunnel:name:da
##                <NA>               <NA>        <NA>           <NA>
##  tunnel:name:de tunnel:name:en tunnel:name:sv tunnel:official_name turn:lanes
##            <NA>           <NA>           <NA>                 <NA>       <NA>
##  turn:lanes:backward turn:lanes:forward width wikidata .weights
##   left|through;right               <NA>  <NA>     <NA>        1
## 
## Kirchhoff weight: 1 
## 
## Directional weight: 1
## # 253 more edges
## # Use `print(n=...)` to see more edges

Also observe that it has the corresponding edge weights:

graph5$get_edge_weights()
## # A tibble: 257 × 74
##    osm_id  name          alt_name animal_crossing:anim…¹ bicycle bridge cycleway
##    <chr>   <chr>         <chr>    <chr>                  <chr>   <chr>  <chr>   
##  1 1525051 Backersvej    NA       NA                     NA      NA     lane    
##  2 1692808 Saltværksvej  NA       NA                     yes     NA     track   
##  3 1698015 NA            NA       NA                     no      NA     NA      
##  4 1700205 Tårnbyvej     NA       NA                     yes     NA     track   
##  5 1754353 Løjtegårdsvej NA       NA                     NA      NA     track   
##  6 1880381 Stenlandsvej  NA       NA                     NA      NA     track   
##  7 1880526 A.P. Møllers… NA       NA                     NA      NA     no      
##  8 2373286 Kastruplundg… NA       NA                     NA      NA     no      
##  9 3431744 Kirstinehøj   NA       NA                     NA      NA     track   
## 10 3431748 Tømmerupvej   NA       NA                     NA      NA     track   
## # ℹ 247 more rows
## # ℹ abbreviated name: ¹​`animal_crossing:animal`
## # ℹ 67 more variables: `cycleway:both` <chr>, `cycleway:right` <chr>,
## #   `cycleway:width` <chr>, destination <chr>, `destination:lanes` <chr>,
## #   `destination:ref` <chr>, `destination:symbol` <chr>, foot <chr>,
## #   hazard <chr>, highway <chr>, horse <chr>, int_ref <chr>, junction <chr>,
## #   lane_markings <chr>, lanes <chr>, `lanes:backward` <chr>, …

It is also relevant to obtain a summary of this graph:

summary(graph5)
## A metric graph object with:
## 
## Vertices:
##   Total: 97 
##   Degree 1: 13;  Degree 2: 32;  Degree 3: 6;  Degree 4: 19;  Degree 5: 1; 
##   Degree 6: 4;  Degree 7: 2;  Degree 8: 3;  Degree 9: 3;  Degree 10: 4; 
##   Degree 11: 2;  Degree 12: 1;  Degree 13: 1;  Degree 17: 1;  Degree 19: 2; 
##   Degree 24: 1;  Degree 27: 1;  Degree 56: 1; 
##   With incompatible directions:  2 
## 
## Edges: 
##   Total: 257 
##   Lengths: 
##       Min: 0.01062707  ; Max: 4.05379  ; Total: 92.41868 
##   Weights: 
##       Columns: osm_id name alt_name animal_crossing:animal bicycle bridge cycleway cycleway:both cycleway:right cycleway:width destination destination:lanes destination:ref destination:symbol foot hazard highway horse int_ref junction lane_markings lanes lanes:backward lanes:forward layer lit mapillary maxheight maxspeed maxspeed:advisory maxspeed:variable maxweight:signed motorcar name:etymology name:etymology:wikidata name:etymology:wikipedia noname note oneway operator operator:wikidata operator:wikipedia placement priority ref shoulder sidewalk sidewalk:both sidewalk:both:surface sidewalk:left sidewalk:left:surface sidewalk:right sidewalk:right:surface smoothness source:maxspeed start_date surface toll traffic_calming tunnel tunnel:alt_name:da tunnel:alt_name:sv tunnel:name tunnel:name:da tunnel:name:de tunnel:name:en tunnel:name:sv tunnel:official_name turn:lanes turn:lanes:backward turn:lanes:forward width wikidata .weights 
##   That are circles:  128 
## 
## Graph units: 
##   Vertices unit:  degree  ; Lengths unit:  km 
## 
## Longitude and Latitude coordinates:  TRUE
##   Which spatial package:  sp 
##   CRS:  +proj=longlat +datum=WGS84 +no_defs
## 
## Some characteristics of the graph:
##   Connected: TRUE
##   Has loops: TRUE
##   Has multiple edges: TRUE
##   Is a tree: FALSE
##   Distance consistent: FALSE
##   Has Euclidean edges: FALSE
## 
## Computed quantities inside the graph: 
##   Laplacian:  FALSE  ; Geodesic distances:  TRUE 
##   Resistance distances:  FALSE  ; Finite element matrices:  FALSE 
## 
## Mesh: The graph has no mesh! 
## 
## Data: The graph has no data!
## 
## Tolerances: 
##   vertex-vertex:  0.1 
##   vertex-edge:  1e-07 
##   edge-edge:  0

We have that this graph does not have Euclidean edges. Also observe that we have the units for the vertices and lengths, and also the coordinate reference system being used by this object.

Alternatively, one can also add create metric graphs from SSN objects. All one needs to do is to directly pass the SSN object as edges. This will also ensure that the correct CRS is used. For example:

library(SSN2)

copy_lsn_to_temp()
path <- file.path(tempdir(), "MiddleFork04.ssn")

mf04p <- ssn_import(
  path = path,
  predpts = c("pred1km", "CapeHorn"),
  overwrite = TRUE
)

river_graph <- metric_graph$new(mf04p)

Let us take a look at the graph:

river_graph$plot()

Let us also look at the interactive plot with the underlying map:

river_graph$plot(vertex_size = 0, type = "mapview")

Similarly to osmdata objects, when using SSN objects, the edge observations are also added as edge weights:

river_graph$get_edge_weights()
## # A tibble: 163 × 17
##      rid    COMID GNIS_NAME   REACHCODE FTYPE FCODE AREAWTMAP   SLOPE rcaAreaKm2
##    <int>    <int> <chr>       <chr>     <chr> <int>     <dbl>   <dbl>      <dbl>
##  1     1 23519365 Bear Valle… 17060205… Stre… 46006     1001. 0.00274     4.65  
##  2     2 23519367 Bear Valle… 17060205… Stre… 46006     1002. 0.0071      0.839 
##  3     3 23519369 Bear Valle… 17060205… Stre… 46006     1003. 0.0036      3.91  
##  4     4 23519295 Bear Valle… 17060205… Stre… 46006     1010. 0.0147      0.0495
##  5     5 23519297 Bear Valle… 17060205… Stre… 46006     1007. 0.00568     5.02  
##  6     6 23519299 Bear Valle… 17060205… Stre… 46006     1003. 0.00104     0.992 
##  7     7 23519301 Bear Valle… 17060205… Stre… 46006     1006. 0.00271     1.46  
##  8     8 23519303 Bear Valle… 17060205… Stre… 46006     1009. 0.00055     0.597 
##  9     9 23519305 Bear Valle… 17060205… Stre… 46006     1009. 0.00026     1.32  
## 10    10 23519307 Bear Valle… 17060205… Stre… 46006     1009. 0.00042     0.865 
## # ℹ 153 more rows
## # ℹ 8 more variables: h2oAreaKm2 <dbl>, Length <dbl>, upDist <dbl>,
## #   areaPI <dbl>, afvArea <dbl>, netID <dbl>, netgeom <chr>, .weights <dbl>

The argument include_edge_weights can also be used in same manner for SSN objects.

However, for SSN objects, observations are also automatically added in the metric graph creation:

river_graph$get_data()
## # A tibble: 45 × 31
##      rid   pid STREAMNAME     COMID AREAWTMAP   SLOPE ELEV_DEM Source  Summer_mn
##    <int> <int> <chr>          <int>     <dbl>   <dbl>    <int> <chr>       <dbl>
##  1     1     3 Bear Valley 23519365     1001. 0.00274     1958 RMRS_M…      14.6
##  2     1     2 Bear Valley 23519365     1001. 0.00274     1952 RMRS_M…      14.7
##  3     1     1 Bear Valley 23519365     1001. 0.00274     1947 RMRS_M…      14.9
##  4     5     5 Bear Valley 23519297     1007. 0.00568     1932 RMRS_M…      14.5
##  5     5     4 Bear Valley 23519297     1007. 0.00568     1923 RMRS_M…      15.2
##  6    10     6 Bear Valley 23519307     1009. 0.00042     1940 RMRS_M…      15.3
##  7    13     7 Bear Valley 23519313     1010. 0           1940 RMRS_M…      15.1
##  8    15     8 Bear Valley 23519317     1013. 0.00297     1945 RMRS_M…      14.9
##  9    17    10 Elk         23519321     1025. 0           1950 RMRS_M…      15.0
## 10    17     9 Elk         23519321     1025. 0           1948 RMRS_M…      15.0
## # ℹ 35 more rows
## # ℹ 22 more variables: MaxOver20 <dbl>, C16 <dbl>, C20 <dbl>, C24 <dbl>,
## #   FlowCMS <dbl>, AirMEANc <dbl>, AirMWMTc <dbl>, rcaAreaKm2 <dbl>,
## #   h2oAreaKm2 <dbl>, ratio <dbl>, snapdist <dbl>, upDist <dbl>, afvArea <dbl>,
## #   locID <int>, netID <dbl>, netgeom <chr>, .distance_to_graph <dbl>,
## #   .edge_number <dbl>, .distance_on_edge <dbl>, .group <dbl>, .coord_x <dbl>,
## #   .coord_y <dbl>

With respect to addition of data in SSN objects, we have the option include_obs that acts in the same manner as the include_edge_weights argument. For example, one can choose to not include the data by setting include_obs to FALSE:

river_graph <- metric_graph$new(mf04p, include_obs = FALSE)

Let us confirm that no data was added:

river_graph$get_data()
## Error in river_graph$get_data(): The graph does not contain data.

Finally, one can select which columns to add, by passing the names (or numbers) of the columns as the include_edge_weights argument.

river_graph <- metric_graph$new(mf04p, include_obs = c("SLOPE", "Summer_mn"))

and the data:

river_graph$get_data()
## # A tibble: 45 × 8
##      SLOPE Summer_mn .distance_to_graph .edge_number .distance_on_edge .group
##      <dbl>     <dbl>              <dbl>        <dbl>             <dbl>  <dbl>
##  1 0.00274      14.6                  0            1            0.207       1
##  2 0.00274      14.7                  0            1            0.374       1
##  3 0.00274      14.9                  0            1            0.986       1
##  4 0.00568      14.5                  0            5            0.484       1
##  5 0.00568      15.2                  0            5            0.768       1
##  6 0.00042      15.3                  0           10            0.719       1
##  7 0            15.1                  0           13            0.386       1
##  8 0.00297      14.9                  0           15            0.0926      1
##  9 0            15.0                  0           17            0.188       1
## 10 0            15.0                  0           17            0.818       1
## # ℹ 35 more rows
## # ℹ 2 more variables: .coord_x <dbl>, .coord_y <dbl>

Adding data to the graph

Given that we have constructed the metric graph, we can now add data to it. For further details on data manipulation on metric graphs, see Data manipulation on metric graphs. As an example, let us consider the first graph again and suppose that we have observations at a distance 0.5 from the start of each edge. One way of specifying this is as follows

obs.loc <- cbind(1:4, rep(0.5, 4))
obs <- c(1,2,3,4)
df_graph <- data.frame(y = obs, edge_number = obs.loc[,1], 
                        distance_on_edge = obs.loc[,2])
graph$add_observations(data = df_graph)
## Adding observations...
## list()
graph$plot(data = "y", data_size = 2)

In certain situations, it might be easier to specify the relative distances on the edges, so that 0 represents the start and 1 the end of the edge (instead of the edge length). To do so, we can simply specify normalized = TRUE when adding the observations. For example, let us add one more observation at the midpoint of the fourth edge:

obs.loc <- matrix(c(4, 0.5),1,2)
obs <- c(5)
df_new <- data.frame(y=obs, edge_number = obs.loc[,1], 
                          distance_on_edge = obs.loc[,2])
graph$add_observations(data=df_new, normalized = TRUE)
## Adding observations...
## list()
graph$plot(data = "y")

An alternative method is to specify the observations as spatial points objects, where the locations are given in Euclidean coordinates. In this case the observations are added to the closes location on the graph:

obs.loc <- rbind(c(0.7, 0), c(0, 0.2))
obs <- c(6,7)
points <- SpatialPointsDataFrame(coords = obs.loc,
                                 data = data.frame(y = obs))
graph$add_observations(points)
## Adding observations...
## Converting data to PtE
## $removed
## [1] y        .coord_x .coord_y
## <0 rows> (or 0-length row.names)
graph$plot(data = "y")

If we want to replace the data in the object, we can use clear_observations() to remove all current data:

graph$clear_observations()

The metric_graph object can hold multiple variables of data, and one can also specify a group argument that it useful for specifying that data is grouped, which for example is the case with data observed at different time points. As an example, let us add two variables observed at two separate time points:

obs.loc <- cbind(c(1:4, 1:4), c(rep(0.5, 4), rep(0.7, 4)))
df_rep <- data.frame(y = c(1, 2, NA, 3, 4, 6, 5, 7),
                     x = c(NA, 8, 9, 10, 11, 12, 13, NA),
                     edge_number = obs.loc[,1], 
                     distance_on_edge = obs.loc[,2],
                     time = c(rep(1, 4), rep(2, 4)))
graph$add_observations(data = df_rep, group = "time")
## Adding observations...
## list()

If NA is given in some variable, this indicates that this specific variable is not measured at that location and group. We can now plot the individual variables by specifying their names in the plot function together with the group number that we want to see. By default the first group is shown.

graph$plot(data = "y", group = 2)

In some cases, we might want to add the observation locations as vertices in the graph. This can be done as follows:

graph$observation_to_vertex()
graph$plot(data = "x", group = 1)

One can note that the command adds all observation locations, from all groups as vertices.

Finally, let us obtain a summary of the graph containing data:

summary(graph)
## A metric graph object with:
## 
## Vertices:
##   Total: 12 
##   Degree 1: 1;  Degree 2: 10;  Degree 3: 1; 
##   With incompatible directions:  2 
## 
## Edges: 
##   Total: 12 
##   Lengths: 
##       Min: 0.2  ; Max: 0.8707963  ; Total: 4.570796 
##   Weights: 
##       Min: 1  ; Max: 1 
##   That are circles:  0 
## 
## Graph units: 
##   Vertices unit:  None  ; Lengths unit:  None 
## 
## Longitude and Latitude coordinates:  FALSE
## 
## Some characteristics of the graph:
##   Connected: TRUE
##   Has loops: FALSE
##   Has multiple edges: FALSE
##   Is a tree: FALSE
##   Distance consistent: TRUE
##   Has Euclidean edges: TRUE
## 
## Computed quantities inside the graph: 
##   Laplacian:  FALSE  ; Geodesic distances:  TRUE 
##   Resistance distances:  FALSE  ; Finite element matrices:  FALSE 
## 
## Mesh: The graph has no mesh! 
## 
## Data: 
##   Columns:  y x time 
##   Groups:  time 
## 
## Tolerances: 
##   vertex-vertex:  0.001 
##   vertex-edge:  0.001 
##   edge-edge:  0

When dealing with SSN objects, one can also directly add the SSN object as data:

river_graph$clear_observations()
river_graph$add_observations(data = mf04p)
## $removed
##  [1] rid        pid        STREAMNAME COMID      AREAWTMAP  SLOPE     
##  [7] ELEV_DEM   Source     Summer_mn  MaxOver20  C16        C20       
## [13] C24        FlowCMS    AirMEANc   AirMWMTc   rcaAreaKm2 h2oAreaKm2
## [19] ratio      snapdist   upDist     afvArea    locID      netID     
## [25] netgeom    .coord_x   .coord_y  
## <0 rows> (or 0-length row.names)

We can see that the data has been added correctly:

river_graph$get_data()
## # A tibble: 45 × 31
##      rid   pid STREAMNAME     COMID AREAWTMAP   SLOPE ELEV_DEM Source  Summer_mn
##    <int> <int> <chr>          <int>     <dbl>   <dbl>    <int> <chr>       <dbl>
##  1     1     3 Bear Valley 23519365     1001. 0.00274     1958 RMRS_M…      14.6
##  2     1     2 Bear Valley 23519365     1001. 0.00274     1952 RMRS_M…      14.7
##  3     1     1 Bear Valley 23519365     1001. 0.00274     1947 RMRS_M…      14.9
##  4     5     5 Bear Valley 23519297     1007. 0.00568     1932 RMRS_M…      14.5
##  5     5     4 Bear Valley 23519297     1007. 0.00568     1923 RMRS_M…      15.2
##  6    10     6 Bear Valley 23519307     1009. 0.00042     1940 RMRS_M…      15.3
##  7    13     7 Bear Valley 23519313     1010. 0           1940 RMRS_M…      15.1
##  8    15     8 Bear Valley 23519317     1013. 0.00297     1945 RMRS_M…      14.9
##  9    17    10 Elk         23519321     1025. 0           1950 RMRS_M…      15.0
## 10    17     9 Elk         23519321     1025. 0           1948 RMRS_M…      15.0
## # ℹ 35 more rows
## # ℹ 22 more variables: MaxOver20 <dbl>, C16 <dbl>, C20 <dbl>, C24 <dbl>,
## #   FlowCMS <dbl>, AirMEANc <dbl>, AirMWMTc <dbl>, rcaAreaKm2 <dbl>,
## #   h2oAreaKm2 <dbl>, ratio <dbl>, snapdist <dbl>, upDist <dbl>, afvArea <dbl>,
## #   locID <int>, netID <dbl>, netgeom <chr>, .distance_to_graph <dbl>,
## #   .edge_number <dbl>, .distance_on_edge <dbl>, .group <dbl>, .coord_x <dbl>,
## #   .coord_y <dbl>

We can also plot the data:

river_graph$plot(data = "Summer_mn", vertex_size = 0.25)

Let us clear the observations from the river graph:

river_graph$clear_observations()

One can also directly add sf objects into the metric graph. For example, the object mf04p$obs is an sf object.

We can also add the obsevations as:

river_graph$add_observations(data = mf04p$obs)
## $removed
##  [1] rid        pid        STREAMNAME COMID      AREAWTMAP  SLOPE     
##  [7] ELEV_DEM   Source     Summer_mn  MaxOver20  C16        C20       
## [13] C24        FlowCMS    AirMEANc   AirMWMTc   rcaAreaKm2 h2oAreaKm2
## [19] ratio      snapdist   upDist     afvArea    locID      netID     
## [25] netgeom    .coord_x   .coord_y  
## <0 rows> (or 0-length row.names)

We can see that the observations have been added accordingly:

river_graph$get_data()
## # A tibble: 45 × 31
##      rid   pid STREAMNAME     COMID AREAWTMAP   SLOPE ELEV_DEM Source  Summer_mn
##    <int> <int> <chr>          <int>     <dbl>   <dbl>    <int> <chr>       <dbl>
##  1     1     3 Bear Valley 23519365     1001. 0.00274     1958 RMRS_M…      14.6
##  2     1     2 Bear Valley 23519365     1001. 0.00274     1952 RMRS_M…      14.7
##  3     1     1 Bear Valley 23519365     1001. 0.00274     1947 RMRS_M…      14.9
##  4     5     5 Bear Valley 23519297     1007. 0.00568     1932 RMRS_M…      14.5
##  5     5     4 Bear Valley 23519297     1007. 0.00568     1923 RMRS_M…      15.2
##  6    10     6 Bear Valley 23519307     1009. 0.00042     1940 RMRS_M…      15.3
##  7    13     7 Bear Valley 23519313     1010. 0           1940 RMRS_M…      15.1
##  8    15     8 Bear Valley 23519317     1013. 0.00297     1945 RMRS_M…      14.9
##  9    17    10 Elk         23519321     1025. 0           1950 RMRS_M…      15.0
## 10    17     9 Elk         23519321     1025. 0           1948 RMRS_M…      15.0
## # ℹ 35 more rows
## # ℹ 22 more variables: MaxOver20 <dbl>, C16 <dbl>, C20 <dbl>, C24 <dbl>,
## #   FlowCMS <dbl>, AirMEANc <dbl>, AirMWMTc <dbl>, rcaAreaKm2 <dbl>,
## #   h2oAreaKm2 <dbl>, ratio <dbl>, snapdist <dbl>, upDist <dbl>, afvArea <dbl>,
## #   locID <int>, netID <dbl>, netgeom <chr>, .distance_to_graph <dbl>,
## #   .edge_number <dbl>, .distance_on_edge <dbl>, .group <dbl>, .coord_x <dbl>,
## #   .coord_y <dbl>

Working with functions on metric graphs

When working with data on metric graphs, one often wants to display functions on the graph. The best way to visualize functions on the graph is to evaluate them on a fine mesh over the graph and then use plot_function. To illustrate this procedure, let us consider the following graph:

V <- rbind(c(0, 0), c(1, 0), c(1, 1), c(0, 1), c(-1, 1), c(-1, 0), c(0, -1))
E <- rbind(c(1, 2), c(2, 3), c(3, 4), c(4, 5),
           c(5, 6), c(6, 1), c(4, 1),c(1, 7))
graph <- metric_graph$new(V = V, E = E)
graph$build_mesh(h = 0.5)
graph$plot(mesh=TRUE)

In the command build_mesh, the argument h decides the largest spacing between nodes in the mesh. As can be seen in the plot, the mesh is very coarse, so let’s reduce the value of h and rebuild the mesh:

  graph$build_mesh(h = 0.01)

Suppose now that we want to display the function f(x,y)=x2y2f(x, y) = x^2 - y^2 on this graph. We then first evaluate it on the vertices of the mesh and then use the function plot_function to display it:

x <- graph$mesh$V[, 1]
y <- graph$mesh$V[, 2]
f <- x^2 - y^2
graph$plot_function(X = f)

Alternatively, we can set type = "plotly" in the plot command to get a 3D visualization of the function:

graph$plot_function(X = f, type = "plotly")

When the first argument of plot_function is a vector, the function assumes that the values in the vector are the values of the function evaluated at the vertices of the mesh. As an alternative, one can also provide a new dataset. To illustrate this, let us first construct a set of locations that are evenly spaced over each edge. Then, we will convert the data to Euclidean coordinates so that we can evaluate the function above. Then, process the data and finally plot the result:

n.e <- 30
PtE <- cbind(rep(1:graph$nE, each = n.e), 
             rep(seq(from = 0, to = 1, length.out = n.e), graph$nE))        
XY <- graph$coordinates(PtE)
f <- XY[, 1]^2 - XY[, 2]^2
data_f <- data.frame(f = f, "edge_number" = PtE[,1], 
            "distance_on_edge" = PtE[,2])
data_f <- graph$process_data(data = data_f, normalized=TRUE)            
graph$plot_function(data = "f", newdata = data_f, type = "plotly")

Alternatively, we can add the data to the graph, and directly plot by using the data argument. To illustration purposes, we will build this next plot as a 2d plot:

graph$add_observations(data = data_f, clear_obs = TRUE, normalized = TRUE)
## Adding observations...
## list()
graph$plot_function(data = "f")

Further details on plot_function

By default, the values along the edges are interpolated try to provide a better plot. This behavior can be disabled by setting interpolate_plot to FALSE.

We begin by recreating the first graph we used in this vignette:

edge1 <- rbind(c(0,0),c(1,0))
edge2 <- rbind(c(0,0),c(0,1))
edge3 <- rbind(c(0,1),c(-1,1))
theta <- seq(from=pi,to=3*pi/2,length.out = 50)
edge4 <- cbind(sin(theta),1+ cos(theta))
edges = list(edge1, edge2, edge3, edge4)

graph <- metric_graph$new(edges = edges)

Let us create a coarse mesh, so the interpolation can be easily seen.

graph$build_mesh(h=0.8)
graph$plot(mesh=TRUE)

Let us compute the function the same function as before on this mesh:

XY <- graph$mesh$V
f <- XY[, 1]^2 - XY[, 2]^2

We can directly plot from the mesh values. Let us start with the default, the interpolated plot:

graph$plot_function(f)

We can, now, turn off the interpolation by setting interpolate_plot to FALSE:

graph$plot_function(f, interpolate_plot = FALSE)

Alternatively, we can supply the data through the newdata argument. To such an end, we will need to supply the data.frame. So let us build it:

df_f <- data.frame(edge_number = graph$mesh$VtE[,1],
                    distance_on_edge = graph$mesh$VtE[,2],
                    f = f)

Let us now process the data.frame to the graph’s internal data format using the process_data() method:

df_f <- graph$process_data(data = df_f, normalized=TRUE)

We will now plot this function. First, let us do the default plot from plot_function:

graph$plot_function(data = "f", newdata= df_f)

Let us now, create the same plot with interpolate_plot=FALSE:

graph$plot_function(data = "f", newdata= df_f, interpolate_plot=FALSE)

Let us now obtain a 3d plot. First, of the default version:

graph$plot_function(data = "f", newdata= df_f, type = "plotly")

Now, of the non-interpolated version:

graph$plot_function(data = "f", newdata= df_f, type = "plotly",
                    interpolate_plot = FALSE)

Note about continuity

However, it is important to observe that plot_function assumes continuity of the function by default. Let us see an example of a discontinuous function, and observe the effect of plot_function.

For example, let us consider the function that takes the edge number (normalized). Let us also refine the mesh a bit, so it is easier to observe what is happening.

graph$build_mesh(h=0.2)
f <- graph$mesh$VtE[,1]/4

Let us proceed with the creation of the data.frame and processing of the data:

df_f <- data.frame(edge_number = graph$mesh$VtE[,1],
                    distance_on_edge = graph$mesh$VtE[,2],
                    f = f)
df_f <- graph$process_data(data = df_f, normalized=TRUE)

We will now plot this function with the default plot from plot_function:

graph$plot_function(data = "f", newdata= df_f)

Let us now, create the same plot with interpolate_plot=FALSE:

graph$plot_function(data = "f", newdata= df_f, interpolate_plot=FALSE)

Let us now obtain a 3d plot. First, of the default version:

graph$plot_function(data = "f", newdata= df_f, type = "plotly")

Now, of the non-interpolated version:

graph$plot_function(data = "f", newdata= df_f, type = "plotly",
                    interpolate_plot = FALSE)

Observe that for both versions we have the same behavior around the vertices (which are the discontinuity points).

To work with discontinuous functions, the simplest option is to create a mesh that does not assume continuity:

graph$build_mesh(h=0.8, continuous = FALSE)

In this mesh, each vertex is split into one vertex per edge connecting to the vertex, which allows for discontinuous functions.

f <- graph$mesh$PtE[,1]/4
graph$plot_function(f)

Similarly to the case for continuous meshes, we have the interpolate_plot option:

graph$plot_function(f, interpolate_plot = FALSE)

Now, the 3d plot:

graph$plot_function(f, type = "plotly", interpolate_plot = FALSE)

Alternatively, we can similarly plot by setting the data.frame and passing the newdata argument:

df_f <- data.frame(edge_number = graph$mesh$VtE[,1],
                    distance_on_edge = graph$mesh$VtE[,2],
                    f = f)
df_f <- graph$process_data(data = df_f, normalized=TRUE)

Let us now build the plots. In this case, we need to set the continuous argument to FALSE. First the 2d plot:

graph$plot_function(data = "f", newdata= df_f, 
                      continuous = FALSE)

Now, the 3d plot:

graph$plot_function(data = "f", newdata= df_f, type = "plotly",
                    continuous = FALSE)